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ABSTRACT 

Carbon dioxide (CO2) is a key driver of anthropogenic climate change, and cities have been 
identified as major sources of emissions. Both urbanization and land use change are 
positively correlated with urban CO2 emissions, and there is a need to study spatiotemporal 
trends in CO2 to better inform sustainable spatial planning of cities. This study investigates 
the viability of using land use regression (LUR) to predict intraurban CO2 in the San 
Francisco Bay Area using data from the BEACO2N monitoring network. LUR is commonly 
used to predict urban air pollution but there has been no evidence of using LUR to predict 
intraurban CO2. The integration of machine learning (ML) algorithms, such as XGBoost, has 
improved LUR predictive accuracy for pollutants such as carbon monoxide. Therefore, the 
integration of LUR with ML methods will also be explored in this study. This project 
represents a novel contribution to LUR research and intraurban CO2 modelling aiming to 
clarify the relationship between land use and intraurban CO2. 

 

 

INTRODUCTION 

 

Land Use Regression 

Land use regression (LUR) is a specialized application of multiple linear regression used to 
estimate ambient air pollution. It operates under the principle that environmental features, 
such as land use, population density, road networks, topography, and meteorological 
conditions are relevant predictors of air pollution (Li et al., 2021). The most common use of 
LUR is to produce exposure assessments for epidemiological studies to predict what levels 
of air pollution survey participants may be exposed to at unmonitored locations, such as their 
places of residence (Larkin et al., 2023; Li et al., 2021; Ryan and LeMasters, 2007). 
Researchers have used LUR to predict concentrations of nitrogen dioxide (NO2), ambient 
respirable suspended particulates (PM10), fine suspended particulates (PM2.5), ozone (O3) 
and carbon monoxide (CO) (Larkin et al., 2023; Li et al., 2021; Wong et al., 2021).  

In a literature review synthesizing the development of LUR models, Ryan and LeMasters 
(2007) analysed 12 studies and found that independent variables used in LUR can be 
broadly categorized into four categories: (1) road type, (2) traffic count, (3) elevation, and (4) 
land cover; traffic count was generally the most important predictor variable. LUR can 
achieve considerable accuracy of predictions, and Ryan and LeMasters (2007) found that 
the analysed LUR models accounted for between 54% and 81% of the variability in air 
pollutant concentrations. Furthermore, the integration of machine learning (ML) algorithms, 
particularly XGBoost, has proven capable of improving LUR accuracy (Wong et al., 2021). 

One major advantage of LUR is its ability to capture fine-scale spatial and temporal patterns 
(Larkin et al., 2023; Ryan and LeMasters, 2007). Intraurban air pollution is characterized by 
high spatial and temporal variability due to seasonal and daily variations in traffic and 
meteorological conditions and the decay of pollutants over space and time (Larkin et al., 
2023; Ryan and LeMasters, 2007). Therefore, granular data is key when attempting to 
accurately capture spatiotemporal variability in intraurban air pollution. Limitations of LUR 
include poor transferability between cities and limited global generalizability due to spatially 
skewed distributions of sensors (Larkin et al., 2023; Li et al., 2021). The performance of the 
models is sensitive to the quality and quantity of training data, the location of sensors, and 
the choice of predictor variables (Ryan and LeMasters, 2007). 

 

Intraurban Carbon Dioxide 



Urbanization is a key trend of the twenty-first century, and 70% of energy-related CO2 
emissions globally are associated with urban areas (Intergovernmental Panel On Climate 
Change (IPCC), 2023). Currently, over half of the world’s population lives in cities, and by 
2100 this rate is projected to increase up to 80-90% (Riahi et al., 2017). Research has 
identified positive correlations between urbanization and CO2 emissions (Poumanyvong and 
Kaneko, 2010; Wang, 2018). Therefore, cities around the world must be treated as critical 
contributors to climate change, and increased efforts should be dedicated towards 
understanding and mitigating their climate impact. Carbon dioxide (CO2) is a critical 
greenhouse gas (GHG) that is produced during the combustion of fossil fuels and is a key 
driver of anthropogenic climate change. Better understanding the trends and variability in 
intraurban CO2 is important to inform stakeholders and policymakers in the development of 
sustainable spatial planning strategies (Mitchell et al., 2018; Wang, 2018). 

Like the air pollutants typically modelled using LUR, CO2 demonstrates intraurban 
spatiotemporal variability. The heterogeneous nature of urbanization and land use activities 
results in a heterogeneous landscape of CO2 levels within cities (Wang, 2018). Wang (2018) 
studied the relationship between zoning plans and emissions resulting from major economic 
sectors in the Taipei metropolitan area; the study found that total sector emissions increased 
alongside growth in total zoned area, and that individual sector activities, and associated 
sector emissions, had unique spatial distributions. Another study identified increased 
emissions resulting from suburban development and population growth in rural areas 
(Mitchell et al., 2018). These studies confirm that urbanization and land use change 
contribute to the spatiotemporal variability of CO2 within cities.  

Unlike air pollutants, ambient CO2 is not commonly measured using sensors at the 
intraurban level. Most often, CO2 emissions are calculated to attribute responsibility to 
governmental or corporate entities using aggregated activity or consumption data (Duren 
and Miller, 2012; Mitchell et al., 2018). Efforts to establish monitoring networks are rising, 
and research in the past decade indicates the deployment of urban CO2 sensors primarily in 
the U.S. (Bréon et al., 2015; Briber et al., 2013; Duren and Miller, 2012; Lauvaux et al., 2016; 
Mitchell et al., 2018; Rice and Bostrom, 2011). Most notably, the Megacities Carbon Project 
represents significant efforts to establish long-term multisite CO2 monitoring networks in 
megacities around the world (Duren and Miller, 2012); however, many existing networks are 
limited in the number of nodes as some feature only between one and five sensors (Bréon et 
al., 2015; Briber et al., 2013; Helfter et al., 2016; Mitchell et al., 2018; Rice and Bostrom, 
2011). Most networks have been established recently, providing a limited historical record of 
CO2 data (Duren and Miller, 2012). Gaps persist in the understanding of urban carbon 
dynamics, and there is a need for more long-term, spatially distributed urban CO2 monitoring 
networks (Mitchell et al., 2018). 

 

Research Gap 

A review of existing literature has produced no evidence of using LUR to model intraurban 
CO2, nor any discussion about the feasibility of such an approach. Possible explanations 
include that CO2 is a GHG rather than an air pollutant associated with human health 
conditions. Therefore, it has little relevance to LUR’s most common application of creating 
exposure assessments for epidemiological studies. Furthermore, the scarcity of long-term, 
spatially distributed urban CO2 monitoring networks may have stalled the development of 
LUR models that rely on temporally and spatially distributed CO2 data. This project aims to 
address this research gap by developing an LUR model to predict intraurban CO2. 

 

Objectives 



The objective of this study is to understand how land use affects intraurban CO2. Specifically, 
the viability and model performance of using LUR to predict intraurban CO2 will be explored. 
The study will also investigate the potential of integrating ML algorithms like XGBoost with 
LUR. The central research question is: How does land use contribute to the spatiotemporal 
trends of intraurban CO2 in the San Francisco Bay Area? The sub-questions are: (1) Can 
LUR effectively predict intraurban CO2? (2) Can ML algorithms improve LUR model 
performance? (3) What are the key predictors of intraurban CO2 emissions in the San 
Francisco Bay Area? 

 

Methodology 

Predictor variable selection and LUR modelling will be informed by previous LUR studies, 
including Larkin et al. (2023), Lee et al. (2017) and Li et al. (2021). The integration of ML 
algorithms will be informed by Wong et al. (2021), which explored deep neural networks 
(DNN), random forest (RF), and extreme gradient boosting (XGBoost). Since XGBoost 
performed best, this will be the algorithm of primary interest. Depending on model 
performance, additional algorithms may be considered. 

 

Expected Outcomes 

LUR models in the literature achieved R2 values roughly between 0.5 and 0.7; this is the 
expected range of model performance for the LUR model in this study. XGBoost helped 
increase R2 from 0.69 to 0.85 in Wong et al. (2021), therefore, a boost in performance is 
expected upon integrating ML. In line with previous findings, road traffic is expected to be a 
major predictor of CO2. This study may be limited by the amount of data and by the 
aggregation data for different variables from various sources, across slightly different spatial 
and temporal scales. 

 

PROGRESS TO DATA 

A literature review has been conducted to understand the current state of research on LUR, 
urbanization, land use, spatiotemporal trends in intraurban CO2, and existing intraurban CO2 
monitoring networks. This review helped identify research gaps and research questions to 
guide this study. It also helped identify possible case sites and data sources. In particular, 
the BErkeley Atmospheric CO2 Observation Network (BEACO2N) monitoring network has 
been identified as a viable source of intraurban CO2 data featuring over 30 sensors 
(Shusterman et al., 2016). Possible sources of data on land use and other potential predictor 
variables have also been identified, mostly using the California Open Data Portal. 

 

 



 
Figure 1. Overview of BEACO2N sensors around the San Francisco Bay Area. http://beacon.berkeley.edu/about/ 

 

FUTURE PLAN 

May 

- Week 1: Literature Review 

June 

- Week 2: Research Gap Identification and Proposal Writing 
- Week 3: Proposal Writing and Data Collection 
- Submit Project Plan by 12:00pm BST on Friday, June 14th, 2024 
- Week 4: Data Collection and data pre-processing 
- Week 5: Data pre-processing and LUR model development 

July 

- Week 6: LUR model building 
- Week 7: LUR model tuning 
- Week 8: ML algorithm implementation 
- Week 9: ML algorithm implementation 
- Complete modelling by Friday, July 26th, 2024 
- Week 10: Results, interpretation and analysis 

August 

- Week 11:  Analysis and report writing 
- Week 12: Report writing 
- Complete first draft of Final Report by Friday, August 16th, 2024 
- Week 13: Report writing 
- Week 14: Report cleaning and presentation planning 
- Submit Final Report by 12:00pm BST on Friday, August 30th, 2024 

http://beacon.berkeley.edu/about/
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