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Abstract

The polar regions of the Moon contain permanently shadowed regions (PSRs), zones which never
receive direct sunlight. These environments remain extremely cold and have the potential to trap
volatile materials (such as water) in solid form. A paper published by Brown et al. [1] analytically
evaluated 65 PSRs to generate a ranking of those with the highest resource potential. This project
aims to achieve the same goal through machine learning (ML) and hopes that a neural network will
be able to better identify patterns across datasets and better rank the PSRs with the highest resource
potential. A review of published literature indicates that since 2020, ML is increasingly being applied
to lunar science however data assimilation exercises such as this remain scarce.

1 Introduction

The presence of water-ice on the Moon was confirmed by NASA following the LCROSS mission
in 2009 [2] which propelled an impactor towards the lunar surface. While the mission was able to
definitively confirm the presence of water on the Moon in one location [3], remote sensing techniques
can be used to indicate its presence and location on a larger scale. It is widely predicted that most
will be contained within lunar permanently shadowed regions (PSRs). Primarily located at the poles
of the Moon, PSRs are in continuous darkness and can reach temperatures as low as −238◦C [4,
5]. While not constant, temperatures in these regions are consistently low enough to create stable
conditions for volatile materials including CO2, H2 and H2O [6].

1.1 Problem description and objective

This project aims to replicate the findings of a reference paper by Brown et al. [1], titled “Resource
potential of lunar permanently shadowed regions”, using a new methodology. The paper uses
analytical methods to assess the resource potential of respective lunar PSRs and ranks them. This
project aims to show that machine learning (ML) can be used to enhance these insights.

The final objective is to create a ranking of the same PSRs but using fewer datasets. The list
generated using ML will be compared against the list in Brown et al. [1].

If ML is able to recreate this ranking accurately, there are significant implications regarding the
potential for data assimilation in lunar resource identification. Higher numbers of datasets, including
images, could be incorporated into neural networks achieving an unprecedented level of assurance
when debating the best places to search for lunar volatiles.

1.2 Methodology

Brown et al. [1] compiles eight remotely sensed datasets across 65 PSRs and gives each region a score
from 0-2 for each dataset (0 = no detection/inconsistent, 1 = consistent, 2 = strongly consistent) for
each of the eight datasets. The result is each PSR has a total score from 0 to 16, where 0 indicates no
detection of volatile materials across any dataset, and 16 indicates all datasets are strongly consistent
for volatile materials. This scoring structure can be seen in Figure 1.

This project will use the same scoring structure to assign synthetic lables to points on a grid and
train a neural network to predict the likelihood of volatile materials based on these labels. This type
of ML is known as deep learning. Only four of the datasets considered in the reference paper will be
evaluated and the same ranges (latitude ranges of 80◦ to 90◦ at each pole) will be considered. These
datasets are:

• LRO’s Diviner Annual Maximum Bolometric Temperature (Diviner)

• LRO’s Mini-RF monostatic CPR (Mini-RF)
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• LRO’s Lunar Orbiter Laser Altimeter (LOLA)

• Chandrayaan-1’s M3

Four of the original datasets were considered incompatible with this project. LRO’s LAMP dataset
is unable to provide data for the North Pole due to low signal to noise ratio (SNR). LRO’s LEND
and LPNS datasets both have a spatial resolution considered too coarse for an ML approach. Finally,
LRO’s Diviner ice depth stability dataset was discounted as the thresholds are based off model
predictions and is without physical rationale for the thresholds. Each of these factors are discussed in
Brown et al. [1].

The impact of this selection is discussed further in section 2.

Figure 1: Scoring structure used to rank PSR resource potential in Brown et al. [1]. In this project,
the LAMP, Diviner Ice Stability, LEND and LPNS datasets are dropped. Image taken from Brown

et al. [1]

1.3 Literature review

As this project seeks to reevaluate existing work through novel means, the review of existing literature
is split into three parts. These parts consist of: literature in the field of the work being replicated,
literature in the novel means being applied and any additional literature of note.

Evaluation and ranking of PSRs

In addition to Brown et al. [1], Brown, Robinson, and Boyd [7] also takes a holistic view by analysing
a larger number of remote sensing datasets to try and analytically rank PSRs. Jia et al. [8] completed
detailed analysis of potential lunar south pole landing sites. They created fuzzy cognitive maps and
ran simulations, varying certain factors to investigate how they affect these sites. Sites were then
ranked for suitability. Additionally, a deep learning tool named HORUS [9] has been developed to
denoise PSR images and has been applied to potential Artemis landing sites in Bickel et al. [10].
Barker et al. [11] and Cannon and Britt [12] both considered LOLA data to improve digital elevation
models (DEMs). They used mathematical algorithms to improve the models with the aim of improving
lander and rover navigation respectively.

Application of deep learning to lunar or remote sensing datasets

In 2021, Varatharajan et al. [13] published a whitepaper titled Artificial Intelligence for the Advancement
of Lunar and Planetary Science and Exploration. This is one of many publications [14, 15] highlighting
the vast potential of AI when applied planetary science and it proposes a range of applications.

The first major application is to make inferences using specific remote sensing datasets. For example,
Cambioni et al. [16] uses neural networks to analyse and predict the surface properties of airless bodies,

2



such as asteroids, by using measurements of emitted infrared flux. This approach helps estimate likely
surface properties by comparing the observed infrared data with the predictions made by surrogate
models. Additionally, Shukla et al. [17] developed a radar scattering model and a deep learning-based
inversion algorithm to identify and analyse the physical nature of lunar regolith. This work focuses on
the detection of near-surface volatiles such as water ice and Helium-3.

Another application of deep learning to lunar data is through image processing. HORUS is a deep
learning tool using convolutional neural networks (CNNs) to identify and reduce noise patterns in
lunar images while preserving important geological features [9]. It has been applied to Artemis sites
and a range of other PSRs [18, 10]. Similarly, Bickel and Kring [19] developed a feature detection
and classification model to identify boulder tracks which had applications to determine slope angles,
bearing capacity and surface strength of the sunlit south polar region. These types of ML algorithms
applied to image-based datasets have been used in a range of investigations ([20, 21, 22]).

Finally, deep learning has been used for navigation and terrain management. Applications for rovers
have been diverse including Wu et al. [23] who introduced a method for lunar rover localization by
generating a synthetic lunar environment and training a Siamese convolutional neural network to
match surface-perspective images with satellite imagery. Many other publications have been made
regarding rover navigation ([24, 25]). In addition to rovers, Gaudet, Linares, and Furfaro [26] used
reinforcement learning to develop an integrated guidance and control system able to optimize the
descent and landing of a planetary lander.

Other literature of significance

For a deeper understanding of how volatile materials behave, Crotts [27] and Zhu et al. [6] were
consulted with Cannon and Britt [28] helping to understand how impacts can redistribute/bury ice
and the mixing efficiency of ice in regolith.

Conclusion

Literature which evaluates or ranks PSRs on a large scale seems scarce. Several have achieved this
analytically ([1, 7, 8]) but current efforts in machine learning (as applied to lunar science) appears
more directed at specific capabilities such as image enhancement, rover navigation and building
models around specific datasets. These applications certainly have importance, informing future
orbiter, rover and manned missions to the Moon, but deep learning should also be applied to data
assimilation exercises to continue to develop a big-picture understanding of the Moon.

By far the most common deep learning architecture in the literature reviewed was the CNN, however
other architectures feature in special cases such as Siamese neural networks [23], reinforcement
learning [24], value iteration [26] and more. There are also opportunities for current research areas to
be combined. For example in the future, the ML algorithms which denoise PSR images and those
which allow rovers to navigate autonomously in lit regions could be combined to enable rovers to
traverse into PSRs.

It is also interesting to note that many publications in the field of ML applied to lunar datasets are
very recent. Of all 23 publications considered in this section, 18 were published in the last five years
(2019-2024) with the earliest in 2012.

2 Progress to date

In addition to the work described in this plan, ranked lists of PSRs considering the full eight datasets
and the four chosen datasets have been compared. Kendall’s Tau value was 0.8816 and Spearman’s
Rank Correlation was 0.9426. This gives sufficient confidence that this selection is satisfactory.
Additionally, the process of processing the data from each instrument has begun with preliminary
scripts developed.
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3 Future plan

Here is presented the intended roadmap to complete the project outlined in section 1.1.

• Project plan and literature review

• Data collection and transformation

• Grid generation

• Synthetic label generation

• Data cleaning and augmentation

• Model training and validation

• PSR ranking

• Comparison with Brown et al. [1]

4



References

[1] H.M. Brown et al. “Resource potential of lunar permanently shadowed regions”. In: Icarus
377 (2022), p. 114874. issn: 0019-1035. doi: https://doi.org/10.1016/j.icarus.2021.
114874. url: https://www.sciencedirect.com/science/article/pii/S001910352100511X.

[2] NASA. LCROSS Impacts Confirm Water in Lunar Crater. Accessed: 2024-06-03. 2009. url:
https://www.lpi.usra.edu/features/lcross/waterFound/.

[3] Kristen M. Luchsinger, Nancy J. Chanover, and Paul D. Strycker. “Water within a permanently
shadowed lunar crater: Further LCROSS modeling and analysis”. In: Icarus 354 (2021), p. 114089.
issn: 0019-1035. doi: https://doi.org/10.1016/j.icarus.2020.114089. url: https:
//www.sciencedirect.com/science/article/pii/S0019103520304322.

[4] The Space Resource. Surviving the Temperamental Moon. Accessed: 2024-06-03. 2019. url:
https://www.thespaceresource.com/news/2019/2/surviving-the-temperamental-

moon#:~:text=The%20permanently%20shadowed%20regions%20(PSRs,within%20the%

20south%20pole%20PSRs.
[5] Kevin M. Cannon and Daniel T. Britt. “Accessibility Data Set for Large Permanent Cold Traps

at the Lunar Poles”. In: Earth and Space Science 7.10 (2020). doi: https://doi.org/10.
1029/2020EA001291.

[6] Fulong Zhu et al. “Modeling and analysis for volatile characteristics of lunar water ice”. In:
Acta Astronautica 220 (2024), pp. 162–172.

[7] H.M. Brown, M.S. Robinson, and A.K. Boyd. “Identifying Resource-rich Lunar Permanently
Shadowed Regions”. In: Developing a New Space Economy. Temple, AZ, 2019. url: https:
//www.hou.usra.edu/meetings/lunarisru2019/pdf/5035.pdf.

[8] Yutong Jia et al. “Selection of Lunar South Pole Landing Site Based on Constructing and
Analyzing Fuzzy Cognitive Maps”. In: Remote Sensing 14.19 (2022), p. 4863.

[9] Ben Moseley et al. “Extreme low-light environment-driven image denoising over permanently
shadowed lunar regions with a physical noise model”. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2021, pp. 6317–6327.

[10] Valentin Tertius Bickel et al. “Cryogeomorphic characterization of shadowed regions in the
Artemis exploration zone”. In: Geophysical Research Letters 49.16 (2022), e2022GL099530.

[11] Michael K Barker et al. “Improved LOLA elevation maps for south pole landing sites: Error
estimates and their impact on illumination conditions”. In: Planetary and Space Science 203
(2021), p. 105119.

[12] Kevin M Cannon and Daniel T Britt. “Accessibility data set for large permanent cold traps at
the lunar poles”. In: Earth and Space Science 7.10 (2020), e2020EA001291.

[13] Indhu Varatharajan et al. “Artificial intelligence for the advancement of lunar and planetary
science and exploration”. In: Bulletin of the American Astronomical Society 53.4 (2021), p. 222.

[14] Brad Nemire. Deep Learning for Image Understanding in Planetary Science. Accessed: 2024-
06-10. 2015. url: https://developer.nvidia.com/blog/deep- learning- image-
understanding-planetary-science/.

[15] Joern Helbert et al. Machine Learning for Planetary Science. Elsevier, 2022.
[16] Saverio Cambioni et al. “Constraining the thermal properties of planetary surfaces using machine

learning: Application to airless bodies”. In: Icarus 325 (2019), pp. 16–30.
[17] Shashwat Shukla et al. “Modelling the Physical Nature of Lunar Regolith at S-Band and L-Band

Wavelengths using the Chandrayaan-2 DFSAR and LRO Mini-RF Radars”. In: 51st Annual
Lunar and Planetary Science Conference. 2326. 2020, p. 2268.

[18] Valentin Tertius Bickel et al. “Peering into lunar permanently shadowed regions with deep
learning”. In: Nature communications 12.1 (2021), p. 5607.

[19] Valentin Tertius Bickel and David A Kring. “Lunar south pole boulders and boulder tracks:
Implications for crew and rover traverses”. In: Icarus 348 (2020), p. 113850.

[20] Ari Silburt et al. “Lunar crater identification via deep learning”. In: Icarus 317 (2019), pp. 27–38.

5

https://doi.org/https://doi.org/10.1016/j.icarus.2021.114874
https://doi.org/https://doi.org/10.1016/j.icarus.2021.114874
https://www.sciencedirect.com/science/article/pii/S001910352100511X
https://www.lpi.usra.edu/features/lcross/waterFound/
https://doi.org/https://doi.org/10.1016/j.icarus.2020.114089
https://www.sciencedirect.com/science/article/pii/S0019103520304322
https://www.sciencedirect.com/science/article/pii/S0019103520304322
https://www.thespaceresource.com/news/2019/2/surviving-the-temperamental-moon#:~:text=The%20permanently%20shadowed%20regions%20(PSRs,within%20the%20south%20pole%20PSRs
https://www.thespaceresource.com/news/2019/2/surviving-the-temperamental-moon#:~:text=The%20permanently%20shadowed%20regions%20(PSRs,within%20the%20south%20pole%20PSRs
https://www.thespaceresource.com/news/2019/2/surviving-the-temperamental-moon#:~:text=The%20permanently%20shadowed%20regions%20(PSRs,within%20the%20south%20pole%20PSRs
https://doi.org/https://doi.org/10.1029/2020EA001291
https://doi.org/https://doi.org/10.1029/2020EA001291
https://www.hou.usra.edu/meetings/lunarisru2019/pdf/5035.pdf
https://www.hou.usra.edu/meetings/lunarisru2019/pdf/5035.pdf
https://developer.nvidia.com/blog/deep-learning-image-understanding-planetary-science/
https://developer.nvidia.com/blog/deep-learning-image-understanding-planetary-science/


[21] Atheer L Salih et al. “Automatic detection of secondary craters and mapping of planetary surface
age based on lunar orbital images”. In: The International Archives of the Photogrammetry,
Remote Sensing and Spatial Information Sciences 42 (2017), pp. 125–132.

[22] Valentin Tertius Bickel et al. “Automated detection of lunar rockfalls using a convolutional
neural network”. In: IEEE Transactions on Geoscience and Remote Sensing 57.6 (2018),
pp. 3501–3511.

[23] Benjamin Wu et al. “Absolute localization through orbital maps and surface perspective imagery:
A synthetic lunar dataset and neural network approach”. In: 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE. 2019, pp. 3262–3267.

[24] Max Pflueger, Ali Agha, and Gaurav S Sukhatme. “Rover-IRL: Inverse reinforcement learning
with soft value iteration networks for planetary rover path planning”. In: IEEE Robotics and
Automation Letters 4.2 (2019), pp. 1387–1394.

[25] Masahiro Ono et al. “Risk-aware planetary rover operation: Autonomous terrain classification
and path planning”. In: 2015 IEEE aerospace conference. IEEE. 2015, pp. 1–10.

[26] Brian Gaudet, Richard Linares, and Roberto Furfaro. “Deep reinforcement learning for six
degree-of-freedom planetary landing”. In: Advances in Space Research 65.7 (2020), pp. 1723–
1741.

[27] Arlin Crotts.Water on The Moon, II. Origins Resources. 2012. arXiv: 1205.5598 [astro-ph.EP].
[28] Kevin M Cannon and Daniel T Britt. “A geologic model for lunar ice deposits at mining scales”.

In: Icarus 347 (2020), p. 113778.

6

https://arxiv.org/abs/1205.5598

	Introduction
	Problem description and objective
	Methodology
	Literature review

	Progress to date
	Future plan

