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Abstract 

The project proposed a machine learning model based on Graph Neural Network to increase the 
efficiency of ATES simula?on while retaining its accuracy from current numerical simula?ons. With a 
wide range of simula?on results obtained from different parameters and aquifer configura?ons by 
in-house numerical model of IC-FERST, the study focused on the implementa?on of Graph Neural 
Network (GNN) on auto-regressive approach to predict the pressure and temperature from the 
output of numerical simula?on on irregular spa?al mesh. The proposed model is capable of 
capturing the physics behind and replicate the results from numerical simula?ons with a promising 
performance, while significantly accelerated the run?me from days to minutes. As a pioneering 
model in the field, the poten?al of machine learning models is unleashed to accelerate current 
numerical simula?ons and to provide instant insights on ATES installa?ons, ul?mately leading to a 
smoother transi?on to a low carbon future. The project not only enabled the rapid modelling of 
ATES, but also demonstrated the possibility of crea?ng a digital twinning to replicate the 
complicated physics under various condi?ons, and the poten?al to accelerate numerical simula?ons 
in other fields with similar approaches in Graph Neural Networks. 

  



  

 

 

 

   
 

1 Introduction 

1.1 Background and Problem statement 

ATES provides a low carbon technology solution to regional heating and cooling at the heart of 
energy transition. The design of ATES installation involves numerical simulations on subsurface fluid 
flow and heat transfer within the aquifer, which the numerical simulations are often computationally 
expensive with its fine spatial grid and closely spaced time steps to ensure accuracy. 

To facilitate fast ATES simulation for providing instant insights on installation, the study proposed 
Machine Learning (ML) models to increase the efficiency from numerical simulations while retaining 
its accuracy. As the numerical simulation by in-house model of IC-FERST is implemented on adaptive 
mesh and irregular time steps, this work will evaluate the capability of proposed models to capture 
the physics of subsurface fluid flow and the thermodynamics under unstructured mesh (graph). ML 
Models including Graph Neural Networks (GNN) allow extra flexibility in deforming the mesh 
adaptively in each time steps, while conventional Convolutional Neural Networks (CNN) which takes 
in a regular mesh grid may require extra steps in pre-processing including casting an unstructured 
graph to a structured grid before training the model.  

As GNN requires equivalent input and output shape for the mesh, this work proposed a framework 
to project auto-regressive pairs of graphs across 240 timesteps to the same mesh for prediction with 
Graph Neural Networks.  

 

1.2 Review of existing work 

As the project involves dealing with unstructured graph data for spa?al-temporal modelling, review 
of exis?ng work will focus mainly on the implementa?on of machine learning models including 
Graph Neural Networks (GNNs), Convolu?onal Neural Networks (CNNs) and their varia?ons in other 
applica?ons.  
 
Previous work demonstrated a representa?on of unstructured mesh graph data by deploying GNNs 
to capture the ?me evolu?on of subsurface CO2 plume migra?on (Ju et al., 2023). GNNs capture the 
spa?al-temporal rela?on in the subsurface even with complex geometry involving faults, in which 
CNNs in regular cartesian mesh grid may not be able to handle such heterogeneity accordingly (Ju et 
al., 2023). The outstanding generalisa?on capability leveraged by GNN can poten?ally be 
incorporated into different model architecture to enhance efficiency but retaining certain accuracy. 
 
 

  



  

 

 

 

   
 

1.3 Novelty of work 

With all the existing work successfully model the subsurface multi-phase fluid flow, the project 
developed a machine learning approach that effectively models subsurface multi-phase fluid flow by 
capturing spatial-temporal features from unstructured graph data. The proposed method not only 
accelerates ATES simulations but also serves as a transferable surrogate model for complex systems. 
Comparing with conventional simulations like IC-FERST, which may take days to process 240 
timesteps, our approach delivers accurate predictions within minutes using a pre-trained model. 
Additionally, while IC-FERST’s reliance on CPU computation limits hardware parallelization, our ML-
based model inherently supports GPU parallelization, significantly reducing runtime without 
sacrificing accuracy. 

1.4 Proposed model and solution 

The proposed model involves a U-net architecture with Graph Convolutional layers in both encoder 
and decoder, connected by skip connections. This model architecture will serve as a working solution 
for auto-regressive approach that takes in the graph of previous timestep and predict the next 
timestep on the same mesh, as U-net architecture provides a solid grounding for spatial graph 
reconstruction with skip connections. Graph Convolution layers allow the model to aggregate the 
information from nearby nodes and perform message passing in a relatively computational efficient 
way. As a result, the proposed U-GCN will allow the model to capture the physics behind while 
retaining spatial features, addressing the problems in our use case. 

 

  



  

 

 

 

   
 

2 Methodology 

2.1 Data Acquisition 

As the model will be trained on simulation input parameters, mesh, and simulation results, 840 sets 

of numerical simulations from in-house code IC-FERST are prepared as training dataset. The figure 

below outlines the data involved in each simulation scenario: 

Figure 1 | Input and output of the model from simulation data 

 

The figure outlines the required data from IC-FERST simulation for each simulation, which the model 
will be trained on (1) parameters from scenario database, and (2) mesh to predict 240 timesteps of 
simulation results in autoregressive pairs. 

 

2.2 Approaches and workflow 

This work proposed an auto-regressive approach for Machine Learning (ML) based ATES simulation. 
The pre-trained ML model takes in the graph containing the state variables of physical quantities 
including temperature, pressure, vertical permeability of different layers of current timestep and 
predict the graph of the next timestep on the same mesh. The predicted timestep subsequently 
serves as the input for the next iteration, enabling the generation of a sequence of predicted graphs 
across any user-defined number of timesteps.  



  

 

 

 

   
 

2.3 Data Pre-processing 

2.3.1 Graph creation  

To prepare the dataset for training the Graph Neural Network (GNN), each VTU file, spanning 
timesteps 1 to 240 across different scenarios, is processed into graph data. Each VTU file contains a 
mesh (comprising nodes and edges), tetrahedron cell attributes, and node attributes. The mesh is 
combined with the geological properties of the reservoir and well configurations, which are 
extracted from a scenario database (CSV), to create the graph object. The thermodynamic states 
(Phase 1 Temperature and Pressure) along with other node attributes are then assigned to the 
nodes of the graph accordingly. The injection phase corresponding to each timestep is extracted 
from the predefined injection strategy sequence and assigned as a node attribute in the graph. After 
assigning the node attributes, the Cartesian coordinates of the nodes are extracted to calculate the 
Euclidean distance for the edges within the graph’s topology. 
Tetrahedron cell attributes (controlled volume) can be incorporated into the graph data by 
projecting them to all 6 corresponding bi-directional edges accordingly and store as edge attributes 
in the graph object. It allows the model to capture the fluid dynamics throughout the message 
passing in Graph Neural Network (GNN). 

 

2.3.2 Mesh projection for auto-regressive pairs 

After creating graphs that represent the state of each timestep, consecutive graphs are grouped in 
auto-regressive pairs such that the graph of former timestep serves as the input of model, and the 
latter one acts as the prediction target (ground truth). The two graphs are then projected to the 
same mesh for training Graph Neural Networks, either by backward projection (projecting the target 
graph to the mesh of input graph) or forward projection (projecting the input graph to the mesh of 
target graph) with nearest neighbour interpolation. 

 

2.3.3 Standardization and train-test split 

To evaluate the capability of generalization of model, the dataset is split into train and test set in 
which the test set constitutes approximately 10% of the full dataset. Both train and test set are 
standardized respectively, whereas the test set is standardized with the mean and standard 
deviation of train set to avoid data leakage throughout the training process, aligning with standard 
ML practice. 

  



  

 

 

 

   
 

2.4 Model Architecture 

2.4.1 U-GNN: Graph Neural Network with classical U-net architecture 

The U-GNN model presented in this work adopts the classical U-Net style architecture that is 
designed to handle spatial reconstruction and perform temporal prediction in an auto-regressive 
approach tailored for rapid ATES simulations. The architecture leverages the strengths of Graph 
Convolutional Networks (GCNs), multi-hop aggregation layers, and Graph Attention Networks (GATs) 
to effectively capture the complex physics of plume diffusion and fluid dynamics in a porous 
medium. 

The architecture of U-GNN consists of an encoder block, processor, and decoder block, with skip 
connections linking each layer of the encoder and decoder blocks to facilitate the spatial 
reconstruction of the ATES aquifer. The encoder and decoder blocks each comprise three layers of 
graph convolution, using either GCN Convolution, GAT Convolution, multi-hop aggregation GCN 
Convolution, or a hybrid approach. The encoder effectively extracts and aggregates the spatial 
features of the input graph, generating an embedding that is passed through the subsequent 
processor and decoder blocks. 

The processor block may involve temporal attention mechanisms or temporal convolutional blocks, 
allowing the model to learn the temporal evolution from one timestep to the next. The processed 
graph embeddings in the latent space of the processor are then passed to the decoder block, where 
they are combined with skip connections from the encoder block to reconstruct the graph’s spatial 
features.  

2.4.1.1 Graph Convolution Neural Network (GCN) 

The Graph Convolutional Network (GCN) is the fundamental building block of the U-GNN 
architecture. GCNs generalize the concept of convolution to graphs, allowing the model to aggregate 
information from a node’s local neighbourhood. Specifically, in GCNs, each node updates its feature 
representation by aggregating features from its immediate neighbours, weighted by the graph’s 
adjacency matrix. This message-passing mechanism is computationally efficient and captures local 
spatial dependencies in the data, making it well-suited for tasks involving spatial relationships, such 
as modelling the diffusion of temperature and pressure plumes in ATES simulations. 

In the context of the U-GCN model, the GCN layers are used to encode the input graph data by 
progressively capturing higher-order dependencies through multiple layers stacked in the encoder. 
The encoder path comprises three GCN layers, each capturing progressively broader spatial contexts. 
This structure ensures that the model effectively learns the spatial correlations and interactions 
within the ATES reservoir, which is crucial for accurately capturing the physics behind. 
The strength of GCNs lies in their ability to efficiently model graph-structured data by aggregating 
local information in a relatively computationally efficient way. Compared to standard CNNs, which 
are limited to grid-like structures, GCNs can naturally handle irregular graph topologies, making 
them intrinsically ideal for the mesh-based data used in ATES simulations. By capturing the spatial 
dependencies in the reservoir, GCNs contribute significantly to the model’s ability to perform 
accurate spatial reconstruction in an auto-regressive framework. 



  

 

 

 

   
 

2.4.1.2 Multi-hop aggregation Graph Convolution layers  

The multi-hop aggregation GCN layers enhance the standard GCN by allowing the model to 
aggregate information over multiple hops, thereby expanding the receptive field of each node. By 
replacing the standard GCN layer with the Multi-Hop GCN convolution layer, the message-passing 
process is iterated over multiple hops (denoted by 𝐾) within the single layer in forward pass. Each 
hop represents an additional step in the propagation of information across the graph, enabling the 
model to capture more distant dependencies that are critical in simulating complex physical 
processes. Specifically for ATES simulation, the diffusion of temperature and pressure in the 
reservoir is influenced not just by immediate neighbours but also by nodes that are several steps 
away in the graph. By aggregating information over multiple hops, the model can more accurately 
simulate these processes, leading to improved spatial reconstruction and predictive performance. 

The strength of multi-hop aggregation lies in its ability to model complex, multi-scale interactions 
within the graph, which are essential for capturing the dynamics of fluid in ATES simulations. This 
makes it a powerful extension of the standard GCN, particularly in scenarios where capturing long-
range spatial dependencies is crucial including the timesteps involving injection phase change. 

2.4.1.3 Graph Attention (GAT) Layers  

The Graph Attention Network (GAT) introduces attention mechanisms to graph convolutions, 
allowing the model to weigh the relative importance of neighbouring nodes differently. Unlike GCNs, 
which treat all neighbours equally, GATs learn to assign attention scores to different edges, 
effectively focusing more on the most relevant nodes. This ability to dynamically prioritize and focus 
on information from different parts of the graph is particularly advantageous in complex 
environments like ATES simulations, where certain areas of the reservoir including the well screen or 
high gradient areas may have a more significant impact on the overall system dynamics. 

The GAT layers are particularly effective in scenarios where the importance of neighbouring nodes is 
not uniform, especially when simulating the influence of localized high-permeability zones or 
injection wells in ATES reservoirs. By focusing on the most relevant nodes, GATs may be more 
advantageous by incorporating attention mechanisms in tasks involving complex, heterogeneous 
interactions. 

2.4.1.4 Hybrid Layers (GAT | GCN) 

The combination of GCN and GAT layers in the encoder and decoder balances computational 
efficiency with model expressiveness, wherein GCN layers capture general spatial patterns of 
immediate neighbouring nodes with greater computational efficiency, and GAT layers are applied 
after GCN layers to further refine these patterns by emphasizing the most critical interactions. 

The rationale for deploying a hybrid architecture in the encoder and decoder lies in its 
expressiveness to capture local refinement with a larger receptive field while retaining 
computational efficiency. By using GCN layers where broad aggregation is sufficient, followed by 
GAT layers where fine-tuned attention is needed, the model achieves a promising performance 
without unnecessary computational overhead. This approach makes the model an effective solution 
for the complex, multi-scale nature of ATES simulations. By accurately modelling both local and 
global interactions, it addresses the intricate dynamics inherent to these systems. 



  

 

 

 

   
 

2.4.2 Temporal Attention Mechanism 

The Temporal Attention Mechanism is incorporated within the U-GCN architecture to enhance the 
model’s ability to focus on the most influential temporal features during the spatial-temporal 
modelling process. This mechanism assigns varying degrees of importance to different timesteps, 
allowing the model to concentrate on those that are most relevant, particularly during changes in 
the injection strategy. By applying a weighted aggregation of temporal features, the attention 
mechanism effectively distils critical temporal information, improving the model’s accuracy in 
predicting how these changes influence the reservoir’s thermodynamic states, and leading to more 
precise spatial-temporal reconstructions. 

 

2.4.3 Temporal Convolutional Neural Network 

The Temporal Convolutional Neural Network (TCN) in the U-GCN architecture is designed to 
efficiently capture both short-term and long-term temporal dependencies across sequential data. By 
using dilated convolutions, the TCN processes the temporal evolution of physical states in the 
reservoir, particularly accommodating the impact of varying injection strategies over time. This 
approach allows the model to consider a broader temporal context while maintaining computational 
efficiency, ensuring accurate predictions of the reservoir’s behaviour, and enhancing the overall 
effectiveness of the spatial-temporal modelling process. 

  



  

 

 

 

   
 

3 Results  

3.1 Model Performance  

R-squared score  

 Train dataset Test dataset 
 Temperature Pressure Temperature Pressure 
U-GCN (forward) 88.14% 92.54% 85.67% 91.52% 
U-GCN (backward) 93.93% 93.44% 91.65% 90.58% 
Hybrid U-GAT (forward) 89.94% 92.58% 86.87% 91.66% 
Hybrid U-GAT (backward) 93.93% 91.20% 92.20& 90.08% 
Multi-hop GCN (K = 2 | backward) 93.88% 92.10% 91.21% 89.92% 
Multi-hop GCN (K = 3 | backward) 93.80% 90.81% 91.98% 89.66% 

Table 1 | R2 score of different model architecture for train and test set in Phase 1 pressure and temperature respectively. 

The R2 score of different model architecture shows that all models can reach a high accuracy, where 
Hybrid architecture that replace the last encoder and decoder layer to GAT is the most consistent 
model with the highest generalization power. Besides, the increase in hop may not necessarily boost 
the performance in a monotonic way given the complexity of data. Also, the R2 score of backward 
projection is higher than forward projection, but it does not necessary mean that backward 
projection performs better, as backward projection may miss out the new nodes at the high gradient 
area and lead to a higher R2 score. 
 

  



  

 

 

 

   
 

3.2 Model Visualizations (by Projection schemes) 

3.2.1 Forward Projection 

 

 
Figure 2 | Visualization of model predictions from timestep 10 (top left) – 17 (bottom right). For each timestep, upper row shows the 
model prediction and bottom row shows the ground truth. It shows a series of plume diffusion with injection at warm well. 

 



  

 

 

 

   
 

3.2.2 Backward Projection 

 

Figure 3 | Visualization of model in backward projection predictions from timestep 10 (top left) – 17 (bottom right). For each timestep, 
upper row shows the model prediction, middle row shows the ground truth on projected mesh and bottom row shows the ground truth 
on original mesh. 

  



  

 

 

 

   
 

4 Discussion 

4.1 Interpretation of results on fluid flow physics in porous medium 

4.1.1 Heat Plume diffusion and Geo-mechanical pressure build-up distribution 

The model demonstrates significant accuracy in predicting phase 1 temperature and pressure, 
effectively capturing the complex dynamics of heat plume diffusion and subsurface pressure, in 
alignment with fluid flow physics in porous media. 
Given the non-linear dynamics of heat plume diffusion and geo-mechanical pressure build-up in a 
coupled system, the model successfully extracts spatial features from graph inputs, learning the 
temporal evolution of temperature and pressure, particularly at the fluid flow front and in high-
gradient areas. 
During the steady injection timesteps at the well screen, the predicted phase 1 temperature 
accurately reflects the heat plume expansion, demonstrating the model’s precision in capturing both 
the temperature and geometry of the plume. Notably, the model excels in capturing abrupt 
temperature gradient changes at the heat plume’s fringe. The phase 1 pressure variations, confined 
around the well screen with constant wellbore injection, exhibit exceptional predictability under 
steady state injection, emphasizing the model’s reliability in these scenarios. 

 

4.1.2 Injection phase change 

While the proposed model effectively predicts the spatial and temporal evolution of temperature 
and pressure during steady-state injection—capturing the dynamics of heat plume diffusion—its 
performance diminishes at transition timesteps, particularly during abrupt injection starts in 
subsequent timesteps. The injection strategy employed in the dataset alternates between 8 
timesteps of injection in the cold well, followed by 4 timesteps of rest, and then 8 timesteps of 
injection in the warm well, followed by another 4 timesteps of rest. The model struggles most 
notably during the transition from rest to injection, where the dynamics deviate markedly from 
other timesteps.  
 
At transition timesteps, the model is expected to capture the diffusion of residual heat plume from 
previous injections and to form a new local injection plume near the well screen. Although the 
model accurately captures residual heat plume diffusion at the background fringe, it fails to respond 
effectively to the injection strategy as indicated by the input nodes at the well screen. 



  

 

 

 

   
 

 
Figure 4 | Evolution of phase 1 temperature from timestep 19 to 23, in which injection in the cold well starts from timestep 21. The model 
prediction on the top row shows that it fails to capture the injection information at the core of the well screen. 

 
This limitation can be attributed to both machine learning and physics perspectives. From a machine 
learning standpoint, the model is purely data-driven without any pre-informed physics. As such, its 
predictions are heavily dependent on the dataset. In this case, only 19 transition timesteps—out of a 
total of 240—represent non-steady-state injection scenarios. This imbalance biases the model 
towards steady-state conditions, impeding its ability to generalize to the transition from non-
injection to injection. Additionally, the structural difference between pre- and post-injection states 
may be too significant for the model to reconcile under its current architecture, limiting its ability to 
capture both plume diffusion and the abrupt onset of injection. 
 
From a physics perspective, the partial differential equations governing steady-state and transient-
state solutions often involve different boundary conditions and solution derivations. As a result, 
there is no singular solution that can effectively address both steady-state and transient scenarios. 
While the model excels in generalizing heat plume diffusion and pressure build-up under steady-
state conditions, it may not be universally applicable to transition phases that require a transient-
state solution. Addressing this limitation might necessitate the development of a new model or 
architecture that can effectively capture the unique dynamics of these transition phases. 

  



  

 

 

 

   
 

4.2 Significance of work and transferability 

The proposed model delivered a promising prediction for a rapid ATES simulation, in which the 
significance of the work does not only stay within the field of geophysical fluid simulations and 
providing insight on a transferable approach for replicating complicated system by graph neural 
network, but also creating a broader societal impact to enable a smoother transition to a low carbon 
future at the heart of energy transition. 

 

4.2.1 Significant acceleration on numerical simulations  

for IC-FERST without Scalability for hardware acceleration (High GPU suitability by neural network, 
instead of algorithms) 

The proposed model can successfully replicate the physics and deliver accurate prediction with a 
significantly faster runtime comparing with conventional numerical simulations. To generate a full 
240 timesteps of simulations on ICFERST, it often takes up to days to complete the entire run, while 
the proposed model can produce an instant insight of simulations within minutes on a pre-trained 
model. Conventional numerical simulations may not be able to benefit from GPU hardware 
acceleration, in which the computationally expensive operations can only rely on CPU threads. 
However, ML based approaches for simulations intrinsically enable parallelization on GPU cores, in 
which heavily mundane work that requires huge computational power can be distributed to multiple 
cores to accelerate the computation significantly, yielding a high scalability for the proposed model. 

 

4.2.2 Transferable approach for accelerating systems with coupled physics  

The work provided an insight of a transferrable approach to accelerate complicated systems that 
may be computational expensive to simulate in an algorithmic approach. The full workflow adopted 
in the work from attaining data, pre-processing by projection, to the variants of auto-regressive 
graph neural networks is not confined only to the field of geophysical fluid flow dynamics, but may 
also be adopted to aerodynamics, meteorology and climate modelling, traffic system simulation in 
town planning and more potential applications in different fields. These systems are often entangled 
with sets of coupled partial differential equations which requires sophisticated resolution and 
accuracy. Graph neural network can be a computational efficient alternative to conventional 
numerical simulations, which allows variable resolution and topology to enable extra flexibility and 
expressiveness in replicating the model predictions. Intrinsic hardware acceleration by GPU 
parallelized computing in ML-based approach may also be beneficial in fields like meteorology or 
weather forecast, which requires an accurate spatial temporal simulation at fine grids. As numerical 
modelling in weather forecast requires lead time ahead of predicted weather events, GNNs are 
proven to be the next-generation scalable solutions for variable resolution considering its potential 
in accelerating numerical simulations, such that GNN-based auto-regressive models including 
GraphCast from Google Deepmind are already adopted in actual meteorological application in Global 
Forecast System (GFS) (Lam et al., 2023). The proven success of the approach in the work is expected 
to be transferrable to more applications in different fields. 



  

 

 

 

   
 

4.2.3 Energy transition: Rapid modelling of ATES for instant insight 

The proposed model offers a rapid prediction capability for the simulation of Aquifer Thermal Energy 
Storage (ATES) systems, significantly enhancing the potential deployment of geothermal solutions 
across a broader range of locations. Given that ATES systems require carefully tailored 
configurations to optimize the energy harnessed from seasonal groundwater storage, rapid 
modelling can provide immediate insights into various design options, thereby facilitating the 
adaptation of ATES configurations to diverse local conditions. As an innovative approach in the realm 
of next-generation energy solutions, the instant insights provided by this model could play a pivotal 
role in accelerating the energy transition towards a low-carbon future. 

 

4.3 Further advancement for current constraints:  

Reinforcement Learning for mesh adaptivity (+ Transferred Learning) 

On top of the proposed GNN, further advancement on adaptive mesh by Reinforcement Learning 
can be a possible way to develop onwards. As the proposed model delivers predictions on the same 
mesh topology, the introduction of adaptive mesh refinement may unleash the full potential of the 
model with optimized adapted mesh in a full ML-based approach.  

 

4.3.1 Current constraints: constant mesh required by GNN  

One of the constraints encountered by the current model is that the U-GNN structure intrinsically 
requires the same input and output size, which the proposed workflow solve by projecting both 
input and predicted timestep on the same mesh topology to address the constraints. Constant mesh 
is often limited in lacking the optimal nodes to represent the predictions, and we may need much 
more nodes to ensure the resolution is fine enough to represent the entire model space.  

 

4.3.2 Possible solution: Reinforcement Learning for adaptive mesh refinement 

If adaptive mesh refinement (AMR) can be adopted combining the U-GNN architecture as a two-
stage model, it will serve as a powerful solution to the above problem such that the model could 
refine the resolution at the area of high gradient or fine-grained changes, or coarsening the mesh at 
the area where there are no significant changes to increase computational effectiveness. We suggest 
that AMR can be implemented by introducing rewards, policy and specifically designed loss in 
Reinforcement Learning (RL) Agent, such that the model will optimize every move of refining, 
coarsening, displacing nodes, or moving edge to reach the balance between computational 
efficiency and accuracy to represent the whole reservoir. 



  

 

 

 

   
 

4.3.3 Current approach for mesh refinement on ML 

There are different state-of-the-art approaches to deal with adaptive mesh currently, including 
supervised learning and reinforcement learning for mesh adaptivity. Both approaches demonstrated 
extraordinary performance in delivering the optimal mesh topology for predictions in graphs. 

 

4.3.3.1 Supervised Learning with fixed number of nodes and edges 

Supervised learning allows the model to learn the ground truth mesh from existing adaptive meshing 
scheme, such that in the use case of IC-FERST, the ML model can learn the adaptive meshing directly 
from the ground truth from vtu files. However, supervised learning approaches are currently 
confined to constant size on input and output, limiting its ability to add or remove nodes from mesh. 

The Universal Mesh Movement Network (UM2N) is one of the state-of-the-art models described in 
the paper “Towards Universal Mesh Movement Networks,” representing a supervised learning 
approach to adaptive mesh refinement (AMR). UM2N uses a Graph Transformer-based encoder and 
a Graph Attention Network (GAT)-based decoder to facilitate mesh movement (Zhang et al., 2024). 
The network is trained to predict the optimal relocation of mesh nodes to improve the numerical 
solution of partial differential equations (PDEs). This model excels in adapting the mesh to various 
PDEs without requiring re-training, ensuring that computational resources are focused on regions of 
high importance or dynamics. The key innovation from the work is the use of element volume loss 
instead of traditional coordinate loss, which helps the model maintain mesh integrity by reducing 
the likelihood of inverted elements (Zhang et al., 2024). Once trained, UM2N can be applied in a 
zero-shot manner across different problems, making it a versatile tool in scenarios where high 
computational efficiency and accuracy are necessary. 
 

4.3.3.2 Reinforcement Learning for mesh refinement including Lagrangian dynamics on world 

and mesh space 

Reinforcement learning is a computationally efficient yet promising choice in modelling mesh 
refinement. MeshGraphNets , as detailed in the paper “Learning Mesh-Based Simulation with Graph 
Networks,” present a reinforcement learning approach to adaptive mesh refinement that can 
include dynamics in Lagrangian systems (Wu et al., 2023). This method operates by encoding the 
simulation state into a graph and performing message passing in both mesh-space (capturing 
internal dynamics in Lagrangian reference frame) and world-space (handling external dynamics). The 
reinforcement learning framework allows MeshGraphNets to dynamically adjust the mesh resolution 
during the simulation, allocating computational resources to critical regions where higher accuracy is 
needed (Wu et al., 2023). This adaptivity is particularly useful in simulations involving complex 
physical systems like fluid dynamics and structural mechanics. The approach leverages the flexibility 
of graph neural networks (GNNs) to handle irregular meshes, allowing for the refinement of meshes 
in response to evolving simulation conditions. This method is highly efficient, running significantly 
faster than traditional simulation methods, and provides a scalable solution to high-dimensional 
physical simulations. 



  

 

 

 

   
 

4.3.4 Reinforcement Learning on adaptive meshing with variable number of 

nodes and edges on optimal topology 

Building on the strengths of state-of-the-art models that integrate machine learning with Graph 
Neural Networks (GNNs), the application of Reinforcement Learning (RL) to GNNs presents a 
promising avenue for further performance enhancement while optimizing computational resources. 
This approach has the potential to incorporate adaptive mesh refinement strategies within the IC-
FERST, including the addition of new nodes and edges, into the RL framework. By designing reward 
mechanisms that balance computational efficiency with accuracy, RL can be effectively combined 
with the existing auto-regressive GNN framework. This integration could yield more precise results 
by dynamically optimizing the mesh topology, thereby reducing computational overhead while 
improving expressiveness for predictions.  

  



  

 

 

 

   
 

5 Conclusion 

The proposed U-GNN model has demonstrated significant potential in accelerating ATES simulations, 
providing accurate predictions of subsurface temperature and pressure evolution with drastically 
reduced computation times. The model’s capability to capture complex spatial-temporal dynamics, 
especially during steady-state operations, showcases its practical utility in real-world applications. 
Furthermore, the integration of adaptive mesh refinement techniques through Reinforcement 
Learning suggests a promising path forward to enhance the model’s performance under varying 
conditions. This work not only advances the efficiency of ATES simulations but also sets the 
groundwork for broader applications in fields requiring rapid and accurate numerical simulations. 
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