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Abstract 
The project aims at developing machine learning models to increase the efficiency of ATES 
simulation while retaining its accuracy from current numerical simulations. With a wide range 
of simulation results obtained from different parameters and aquifer configuration by in-
house numerical model of IC-FERST, the study will focus on the implementation of machine 
learning models from multiple architecture including Graph Neural Network (GNN), 
transformer (attention mechanism), Fourier Neural Operator (FNO) or Convolutional Neural 
Network (CNN) on predicting the output of numerical simulation in adaptive time steps and 
irregular spatial mesh (dynamically deformed across time steps). The evaluation on 
performance will shed light on the capability of capturing the physics behind and its accuracy 
of replicating the results from numerical simulations. The final model is expected to unleash 
the potential of machine learning models accelerate current numerical simulations and to 
provide instant insights on ATES installation. As a pioneering model in the field, the project 
may ultimately discover the possibility of creating a digital twinning to replicate the 
complicated physics under various conditions. 

  



  

 

 

 

   
 

1 Introduction 

1.1 Background and Problem Description 

ATES provides a low carbon technology solution to regional heating and cooling at the heart 
of energy transition. The design of ATES installation involves numerical simulations on 
subsurface fluid flow and heat transfer within the aquifer, which the numerical simulations 
are often computationally expensive with its fine spatial grid and closely spaced time steps to 
ensure accuracy. 
To facilitate fast ATES simulation for providing instant insights on installation, the study 
proposes deploying machine learning models to increase the efficiency from numerical 
simulations while retaining the accuracy. As the numerical simulation by in-house model of 
IC-FERST is implemented on adaptive mesh and irregular time steps, this project will 
evaluate the capability of proposed models to capture the physics of subsurface fluid flow 
and the thermodynamics under unstructured mesh (graph). Models including Graph Neural 
Network (GNN) or Fourier Neural Operator (FNO) will allow extra flexibility in deforming the 
mesh adaptively in each time steps, while conventional Convolutional Neural Networks 
(CNN) which takes in a regular mesh grid may require extra steps in pre-processing 
including casting an unstructured graph to a structured grid before training the model.  

The difference in architecture between the models may result in a difference in the physics 
captured, which the project may discover further upon compilation of those architecture. The 
final model is expected to deliver simulations of 240 timesteps and record the change of 
physical quantity across irregular timesteps throughout simulation. 
 

1.2 Review of Existing Work 
As the project involves dealing with unstructured graph data for spatial-temporal modelling, 
review of existing work will focus mainly on the implementation of machine learning models 
including GNNs, FNOs, CNNs and their variations in other applications.  
 

1.2.1 Graph Neural Network (GNN) 

Previous work demonstrated a representation of unstructured mesh graph data by deploying 
GNNs to capture the time evolution of subsurface CO2 plume migration (Ju et al., 2023). 
GNNs capture the spatial-temporal relation in the subsurface even with complex geometry 
involving faults, in which CNNs in regular cartesian mesh grid may not be able to handle 
such heterogeneity accordingly (Ju et al., 2023). The outstanding generalisation capability 
leveraged by GNN can potentially be incorporated into different model architecture to 
enhance efficiency but retaining certain accuracy. 



  

 

 

 

   
 

1.2.2 Fourier Neural Operator (FNO) 

FNOs are introduced in existing work to deal with complex PDEs, leveraging it generalisation 
capabilities upon higher dimension problems. Previous work incorporated FNO into U-net 
structure in which FNO successfully capture spatial pattern globally in an efficient way with 
its fast Fourier transform (FFT), combining it with the capability of capturing local features 
with convolutions to enhance the representation power (Wen et al., 2021). With its robust 
generalisation power, the U-FNO model is faster and more data efficient comparing with 
conventional CNN while retaining accuracy (Wen et al., 2021). 

 

1.3 Objectives 

With all the existing work successfully model the subsurface multi-phase fluid flow in CCS 
project, the project aims at developing a machine learning model that captures spatial-
temporal features in unstructured graph data, providing a fast simulation for ATES 
installations. If time allows, multiple models with a range of architecture will be trained and 
evaluated to compare its capability to capture the physics, computational or data efficiency, 
and accuracy. 

 

1.4 Significance 

As a pioneering model in the field, significance of the project sheds light on providing insight 
for accelerating numerical simulations with machine learning approach at sufficiently low 
time complexity or simulation runtime, speeding up the development of technology solution 
and ultimately contributing to a faster yet reliable transition to our low carbon future.  

The model architecture may serve as a key component in creating surrogate models and 
digital twinning of a complicated system to encapsulate the physics behind not only in the 
field of subsurface engineering at the heart of energy transition, but transferable to other 
similar systems with physical quantities coupled together in a complicated way. 



  

 

 

 

   
 

2 Methodology 

2.1 Data acquisition 

As the model will be trained on simulation input parameters, mesh, and simulation results, 
840 sets of numerical simulations from in-house code IC-FERST are prepared as training 
dataset. The figure below outlines the data involved in each simulation scenario:   

Figure 1 | Input and output of the model from simulation data 

 

The figure outlines the required data from IC-FERST simulation for each simulation, which 
the model will be trained on (1) parameters from scenario database, and (2) mesh to predict 
240 timesteps of simulation results and the data as in the outflux.csv. 

  



  

 

 

 

   
 

2.2 Pre-processing  

As different model architecture may require slightly different data pre-processing pipeline, 2 
pathways of data pre-processing are proposed. 

 

2.2.1 Unstructured graph data for GNNs 

Input data pre-processing 

1. Read the nodes in mesh and store it as a graph data. 
2. Create a one-hot encoded attributes to nodes informing the location of wells.  
3. Incorporate thermodynamical parameters (density, heat capacity, thermal 

conductivity, initial temperature) from the scenario database.csv into nodes 
representing overburden, aquifer and underburden accordingly. 

4. Create another graph in which the nodes are located at the barycentre of the existing 
thermodynamics graph, containing information regarding the dynamics of fluid flow in 
the subsurface (velocity, porosity, and permeability). The new staggered graph is 
created to allow message passing for the flux of controlled volume of nodes in 
previous graph throughout training.  
 

Output data pre-processing 

1. Read the mesh from .vtu and store as graph 
2. Incorporate the simulation results (stored as nodes in.vtu) into the graph.  



  

 

 

 

   
 

2.2.2 Structured grid data for CNNs 

Input data pre-processing 

1. Follow all the steps as for unstructured graph data, attaining 2 staggered graphs 
containing thermodynamics and fluid flow parameter respectively. 

2. Cast the 2 unstructured graphs into a single mesh grid of structured cartesian grids 
(may also consider store as staggered grid as of Arakawa C grid). 

3. Perform interpolation whereas necessary. 
 

Output data pre-processing 

1. Follow all the steps as for unstructured graph data, attaining a graph  
2. Cast the graph into a single mesh grid of structured cartesian grids. 
3. Perform interpolation whereas necessary. 

  



  

 

 

 

   
 

2.3 Model Architecture 

2.3.1 Graph Neural Networks (GNNs) 

The project will focus mainly on GNNS and may consider its variants including the 
incorporation of attention layer and U-net architecture. As the inputs of the project involves 
staggered unstructured graphs, the message passing within (horizontal pass) and across 
(vertical pass) the 2 graphs are considered in the design of architecture.  

GraphCast model by Lam et al. (2023) from Google Deepmind suggested an auto-
regressive way to cast multiple graphs of different resolutions to allow vertical message pass 
after horizontal message pass. It is computationally efficient to perform all horizontal 
message pass simultaneously at different resolution level, with the capability to capture 
features from different scales. The project may take reference from the way it casts graph 
and facilitates horizontal and vertical message passing.  

2.3.2 Convolutional Neural Networks (CNNs)  

CNNs serves as an alternative to work on structured spatial mesh grid, in which U-net 
structure may facilitate the feature extraction and reconstruction of simulation results at 
different time steps with skip connections. In this project, it is proposed to incorporate: (1) 
self-attention layer on the encoder after each convolution layer, (2) Residual connections 
vertically as suggested in Resnet for deeper network, (3) LSTM cell at the bottleneck 
(optional). 

  



  

 

 

 

   
 

3 Expected Outcomes/Deliverables 

The project is expected to yield a model for rapid simulation of ATES, and to develop a 
metric to evaluate (1) the capability of models to capture the physics (as compared with the 
ground truth of output at each timesteps and the outflux data), and (2) the accuracy in 
reconstruction of simulation results at each timesteps. If time allows, multiple models will be 
compared laterally. 

4 Project plan 

 
Figure 2 | Gantt Chart showing the rough schedule for project plan at each stage. 
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