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ABSTRACT 

Carbon dioxide (CO2) is a key driver of anthropogenic climate change, and cities have been 
identified as major sources of emissions. Both urbanization and land use change are positively 
correlated with rising CO2 emissions, highlighting the need to study spatiotemporal trends in 
CO2 to better inform sustainable city planning and urban decarbonization strategies. This 
study is the first to investigate the viability of using land use regression (LUR) to predict 
intraurban CO2 concentrations in the San Francisco Bay Area using data from the BEACO2N 
monitoring network. Furthermore, LUR is compared to machine learning (ML) and deep 
learning (DL) algorithms that explore non-linear relationships, representing a two-fold novel 
contribution to the literature. Model performance is evaluated using reserved data from training 
CO2 sensors, as well as data from unseen sensor locations. The highest predictive accuracy 
is achieved using extreme gradient boosting (XGBoost) and a convolutional neural network 
(CNN), both with R² values of 0.58, outperforming traditional LUR, which achieved an R² of 
0.34. XGBoost and CNN also outperformed traditional LUR for unseen sensor locations, 
accounting for up to 42% of the variability in observed CO2 concentrations. The performance 
of the models is constrained by the inconsistent validity of the CO2 data, as well as the limited 
availability of environmental feature data with fine temporal resolution.  

 

INTRODUCTION 

 

Intraurban Carbon Dioxide 

Urbanization is a key trend in the twenty-first century, and 70% of energy-related CO2 
emissions globally are associated with urban areas (Intergovernmental Panel On Climate 
Change (IPCC), 2023). Currently, over half of the world’s population lives in cities, and by 2100 
this rate is projected to increase up to 80-90% (Riahi et al., 2017). Carbon dioxide (CO2) is a 
critical greenhouse gas (GHG) that is produced during the combustion of fossil fuels and is a 
key driver of anthropogenic climate change. Research has identified positive correlations 
between urbanization and CO2 emissions (Poumanyvong and Kaneko, 2010; Wang, 2018). 
Therefore, cities around the world must be treated as critical contributors to climate change, 
and increased efforts should be dedicated towards understanding and mitigating their climate 
impact. Better understanding trends and variability in intraurban CO2 is important to inform 
decision-makers in the development of urban decarbonization strategies (Mitchell et al., 2018; 
Wang, 2018). 

Intraurban CO2 demonstrates considerable spatiotemporal variability. The heterogeneous 
nature of urbanization and land use activities results in heterogeneous landscapes of ambient 
CO2 concentrations within cities (Wang, 2018). Urban areas have been found to be net 
sources of CO2, with distinct seasonal and diurnal fluxes: urban CO2 is highest in the mornings 
and lowest in the evenings, with summer fluxes being less pronounced than in the winter 
(Coutts et al., 2007; Velasco et al., 2005). An increase in wintertime concentrations can be 
linked to more heating fuel combustion and less vegetation cover (Bergeron and Strachan, 
2011; Coutts et al., 2007). Patterns in ambient CO2 are also closely related to traffic volumes, 
with an increase in emissions observed during rush hours periods (Coutts et al., 2007). Finally, 
suburban areas tend to have lower ambient concentrations than urban cores (Bergeron and 
Strachan, 2011; Velasco and Roth, 2010). Mitchell et al. (2018) identified an increase in 
emissions resulting from suburban development and population growth in rural areas. These 
studies illustrate the spatiotemporal variability of intraurban CO2 and its association with 
urbanization and land use change.  

Unlike air pollutants, ambient CO2 is not commonly measured using sensors at the intraurban 
level. Most often, CO2 emissions are calculated to attribute responsibility to governmental or 



corporate entities using aggregated emissions or energy consumption data (Duren and Miller, 
2012; Mitchell et al., 2018). Efforts to establish monitoring networks are rising, and research 
in the past decade indicates the deployment of urban CO2 sensors primarily in the U.S. (Bréon 
et al., 2015; Briber et al., 2013; Duren and Miller, 2012; Lauvaux et al., 2016; Mitchell et al., 
2018; Rice and Bostrom, 2011). Most notably, the Megacities Carbon Project represents 
significant effort to establish long-term multisite CO2 monitoring networks in megacities around 
the world (Duren and Miller, 2012); however, many existing networks are limited in the number 
of nodes as some feature only between one and five sensors (Bréon et al., 2015; Briber et al., 
2013; Helfter et al., 2016; Mitchell et al., 2018; Rice and Bostrom, 2011). Most networks have 
been established recently, providing a limited historical record of ambient CO2 (Duren and 
Miller, 2012). Gaps persist in the understanding of urban carbon dynamics, and there is a need 
for more long-term, spatially distributed CO2 monitoring networks (Mitchell et al., 2018). 

 

Land Use Regression 

Land use regression (LUR) is a specialized application of multiple linear regression used to 
estimate ambient air pollution. It operates under the principle that environmental features, such 
as land use, population density, road networks, topography, and meteorological conditions are 
relevant predictors for air pollutant concentrations (Li et al., 2021). The most common use of 
LUR is to produce exposure assessments for epidemiological studies that predict what levels 
of air pollution survey participants may be exposed to at unmonitored locations, such as their 
places of residence (Larkin et al., 2023; Li et al., 2021; Ryan and LeMasters, 2007). 
Researchers have used LUR to predict concentrations of nitrogen dioxide (NO2), ambient 
respirable suspended particulates (PM10), fine suspended particulates (PM2.5), ozone (O3) and 
carbon monoxide (CO) (Larkin et al., 2023; Li et al., 2021; Wong et al., 2021).  

In a literature review synthesizing the development of LUR models, Ryan and LeMasters 
(2007) analyzed 12 studies and found that independent variables used in LUR can be broadly 
categorized into four groups: (1) road type, (2) traffic count, (3) elevation, and (4) land cover; 
traffic count was generally the most important predictor variable. LUR can achieve 
considerable accuracy, and Ryan and LeMasters (2007) found that the LUR models reviewed 
in the study accounted for between 54% and 81% of the variability in air pollutant 
concentrations. Furthermore, the integration of machine learning (ML) and deep learning (DL) 
algorithms, particularly Extreme Gradient Boosting (XGBoost), has proven capable of 
improving LUR accuracy (Wong et al., 2021). 

One major advantage of LUR is its ability to capture fine-scale spatial and temporal patterns 
(Larkin et al., 2023; Ryan and LeMasters, 2007). Intraurban air pollution is characterized by 
high spatial and temporal variability due to seasonal and daily variations in traffic and 
meteorological conditions, as well as the decay of pollutants over space and time (Larkin et 
al., 2023; Ryan and LeMasters, 2007). Therefore, granular data is key when attempting to 
accurately capture spatiotemporal variability in intraurban air pollution. Limitations of LUR 
include poor transferability between cities and limited global generalizability, partly due to 
uneven spatial distributions of sensors (Larkin et al., 2023; Li et al., 2021). The performance 
of the models is sensitive to the quality and quantity of training data, the location of sensors, 
and the choice of predictor variables (Ryan and LeMasters, 2007). 

 

Research Gap 

A review of existing literature has produced no evidence of using LUR to model intraurban 
CO2 concentrations, nor any discussion about the feasibility of such an approach. Possible 
explanations include that CO2 is a GHG rather than an air pollutant associated with human 
health risks. Therefore, it has little relevance to LUR’s most common application of creating 
exposure assessments for epidemiological studies. Furthermore, the scarcity of long-term, 



spatially distributed urban CO2 monitoring networks may have stalled the development of LUR 
models that rely on temporally and spatially distributed CO2 data. This study aims to address 
this research gap by developing an LUR model to predict intraurban CO2. 

 

Objectives 

The objective of this study is to develop machine learning models to help predict intraurban 
CO2 concentrations in the San Francisco Bay Area. Specifically, the viability and model 
performance of using LUR to predict intraurban CO2 will be explored. The study will also 
investigate how well ML or DL algorithms with non-linear features can predict intraurban CO2 

concentrations. The central research question is: How well do the models explored in this 
study simulate the distribution and variability of intraurban CO2 concentrations in the San 
Francisco Bay Area? The sub-questions are: (1) Can LUR effectively predict intraurban CO2 

concentrations? (2) Can ML and DL algorithms improve upon LUR model performance? (3) 
What are the key predictors of intraurban CO2 concentrations in the San Francisco Bay Area? 
My working hypotheses are that more advanced ML and DL algorithms will outperform 
traditional LUR for predicting intraurban CO2. Furthermore, I hypothesize that feature variables 
related to traffic count or road activity will be amongst the most significant predictors of CO2. 

To address these objectives and research questions, I collected and processed CO2 and 
predictor variable data for modelling. Next, I trained and evaluated three models to predict 
intraurban CO2 at the chosen study site. Finally, I analyzed and compared the final models 
and their performance to draw conclusions about their viability.  

 

METHODS 

 

Study Site: BEACO2N Network 

The Berkeley Environmental Air-quality & CO2 Network (BEACO2N) was identified as a 
promising source of spatiotemporally distributed intraurban CO2 data. The sensor network was 
established in the San Francisco Bay Area by a team of researchers at the University of 
California, Berkeley (Shusterman et al., 2016). A total of 74 unique sensors, or nodes, 
collected real-time CO2 data primarily across the San Francisco Peninsula, the East Bay, and 
North Bay between 2012 and 2024. The sensors in the network record data for CO2, NO, NO2, 
O3, CO, and aerosol as well as for meteorological conditions including temperature, pressure, 
and relative humidity. The data has a temporal resolution of one minute and a spatial resolution 
of approximately one mile, which was the finest spatial and temporal resolution identified 
among any intraurban CO2 monitoring network. The downloaded BEACO2N dataset included 
over 2.4 million raw observations. Similar to previous studies, CO2 and meteorological data 
was aggregated temporally for modelling, by calculating daily averages when a given sensor 
recorded at least 18 out of 24 hours’ worth of valid data in a single day (Larkin et al., 2023; 
Lee et al., 2017).  

 

Feature Data Collection and Processing 

The entire modelling framework, starting with data collection and processing, is summarized 
in Figure 1. The choice of predictor variables was informed by previous LUR studies conducted 
by Larkin et al. (2023), Lee et al. (2017), and Li et al. (2021). Variables related to land use, 
road traffic, vegetation, urbanization, and meteorology were chosen and downloaded based 
on relevance and availability. Table 1 summarizes the features and data sources used. Since 



most BEACO2N data was observed between 2022 and 2024, feature data was chosen to align 
as closely as possible with this timeframe.  

 

Table 1. Feature variables included in feature selection and modelling 

 

 

The geopandas, shapely, and rasterio Python libraries were key to processing spatial 
feature data. Land use data for the study site was downloaded from the global ESRI Sentinel-
2 10m Land Use/Land Cover database as a TIF image, where land use information is stored 
in pixels using unique integer values. The respective land use labels were assigned to each 
integer value, and the data was stored as a GeoDataFrame, where pixels were converted to 
polygon geometries. The transformed data was dissolved and saved as a shapefile. The 
California General Land Use Plan is another source of land use data available for download 
as a shapefile. Given limitations around spatial coverage, this data was only used to 
supplement information about industrial sites and activities in the study region represented as 
polygon geometries. Road and AADT data were downloaded as shapefiles, where roads are 
represented as lines and AADT information is stored in point geometries. NDVI data was 
calculated using Landsat 8-9 OLI Collection 2 Surface Reflectance TIF images, where pixels 

Feature Category Variable Year Source 

buffer radii: 50 m, 100 m, 200 m, 300 m, 500 m, 1000 m, 1500 m, 2000 m, 3000 m, 4000 m, 5000 m 

Land Use 

total area [m
2
] in buffer 

Built Area 
Rangeland 

Trees 
Water 

Bare Ground 
Crops 

Flooded 
Vegetation 

2021 
ESRI Sentinel-2 10m Land 

Use/Land Cover  

Industrial Areas 

total area [m
2
] in buffer 

Industrial 2021-2023 
California General Plan Land 

Use 

Annual Average Daily Traffic 
(AADT) 

total count [AADT] in buffer 
AADT 2022 

Caltrans 2022 Traffic Volumes 
(AADT) 

Roads 
total length [m] in buffer 

Road Length 2022 
U.S. Census Bureau 2022 

California Roads TIGER/Line  

Normalized Difference 
Vegetation Index (NDVI) 

mean NDVI in buffer 
NDVI 2022 

Landsat 8-9 OLI/TIRS C2 L2 
Surface Reflectance-derived 

NDVI 

Population Density 
people per km2 in buffer 

Population 
Density 

2022 
California Hard-to-Count Index 

U.S. Census Bureau 2022 
Census Tract TIGER/Line 

Temperature 
[°C] 

Temperature 2012-2024 BEACO2N 

Pressure 
[kPA] 

Pressure 2012-2024 BEACO2N 

Relative Humidity 
[%] 

Relative 
Humidity 

2012-2024 BEACO2N 

https://www.arcgis.com/apps/instant/media/index.html?appid=fc92d38533d440078f17678ebc20e8e2
https://www.arcgis.com/apps/instant/media/index.html?appid=fc92d38533d440078f17678ebc20e8e2
https://gis.data.ca.gov/datasets/Gov-OPR::california-general-plan-land-use/about
https://gis.data.ca.gov/datasets/Gov-OPR::california-general-plan-land-use/about
https://gis.data.ca.gov/datasets/d8833219913c44358f2a9a71bda57f76_0/about
https://gis.data.ca.gov/datasets/d8833219913c44358f2a9a71bda57f76_0/about
https://catalog.data.gov/dataset/tiger-line-shapefile-2022-state-california-primary-and-secondary-roads
https://catalog.data.gov/dataset/tiger-line-shapefile-2022-state-california-primary-and-secondary-roads
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://cacensus.maps.arcgis.com/apps/webappviewer/index.html?id=48be59de0ba94a3dacff1c9116df8b37
https://www.census.gov/cgi-bin/geo/shapefiles/index.php?year=2022&layergroup=Census+Tracts
https://www.census.gov/cgi-bin/geo/shapefiles/index.php?year=2022&layergroup=Census+Tracts
http://beacon.berkeley.edu/about/
http://beacon.berkeley.edu/about/
http://beacon.berkeley.edu/about/
http://beacon.berkeley.edu/about/
http://beacon.berkeley.edu/about/
http://beacon.berkeley.edu/about/
http://beacon.berkeley.edu/about/
http://beacon.berkeley.edu/about/
http://beacon.berkeley.edu/about/


contain NDVI information as float values between -1.0 and 1.0. Finally, population density data 
was obtained by combining a shapefile featuring census tract polygons with a .csv file 
containing population density data by census tract, where geographic identifier GEOIDs were 
used as a common feature to produce a GeoDataFrame. 

Geographic coordinates for BEACO2N sensor locations were converted to point geometries 
and saved as a GeoDataFrame to be plotted and overlayed with spatial feature data. In 
accordance with previous studies, buffers were created around each node to extract relevant 
feature data. The buffer radii used were 50, 100, 200, 300, 500, 1000, 2000, 3000, 4000, and 
5000 meters. Feature data was extracted within each of the ten buffers zones, for each of the 
following twelve spatial features: built area, rangeland, trees, water, bare ground, crops, 
flooded vegetation, industrial areas, annual average daily traffic (AADT), road length, 
normalized difference vegetation index (NDVI), and population density. Feature extraction 
methods were informed mainly by Lee et al. (2017) and are summarized in Table 2. A total of 
120 spatial features (12 variables times 10 radii) were produced during feature extraction. 

Temperature, pressure, and relative humidity data was collected alongside CO2 by BEACO2N 
sensors; these meteorological features have the same temporal resolution as the CO2 data 
and were aggregated as daily averages alongside CO2. By contrast, daily data for spatial 
features described above was not available, and the temporal resolution of these features is 
instead constant. While land use, NDVI, and population density features are less variable over 
time, the constant temporal resolution for traffic data is a greater compromise. Since the 
meteorological features lacked a spatial dimension, they were not processed using buffers. 
BEACO2N data for CO2 and meteorological conditions was merged with buffered feature data 
using node_id as a common feature, yielding the final dataset of 123 numerical feature 
variables and CO2 data as the target variable. All features were standardized. 

 

Feature Selection 

The feature selection methods from the literature were tested, including approaches by Larkin 
et al. (2023), Lee et al. (2017), Li et al. (2021), and Wong et al. (2021). Ultimately, a new 
protocol was defined that first considered features with an absolute Spearman’s correlation 
coefficient of at least 0.03, before iteratively filtering out features with a variable inflation factor 
(VIF) over 3 (Figure 1). Spearman’s correlation coefficient assesses the strength and direction 
of the relationship between predictor and target variables, with values ranging from -1.0 to 1.0. 
Since individual correlations were relatively small, the cut-off was chosen to be low. 
Spearman’s correlation coefficient was preferred over the Pearson correlation coefficient and 
other feature selection metrics seen in the literature as it does not assume a linear relationship 
between the feature and target variables, which seems more appropriate for non-linear models 
employed in this study. A VIF cutoff of 3 was observed in previous studies and helps minimize 
multicollinearity between features (Lee et al., 2017; Li et al., 2021; Wong et al., 2021). Features 
with all zero observations were dropped.  

 

Traditional LUR (OLS) 

Traditional LUR observed in the literature consists of a multiple linear regression model used 
to predict air pollutant concentrations. In this project, ordinary least squares (OLS) was used 
to fit a multiple linear regression model to the selected features and the observed CO2 data. 



 

 

Table 2. Feature data extraction methodologies for spatial features, including all land use categories , industrial sites, annual average daily traffic, road length, normalized 
difference vegetation index and population density. 
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Extreme Gradient Boosting (XGBoost)  

Previously, Wong et al. (2021) have explored XGBoost in the context of LUR by “incorporating” 
the two methods. In essence, LUR was used for feature selection, by fitting a multiple linear 
regression model between the feature and target variables, and exploring the strength of 
correlations, as well as processing the significance and direction of coefficients for individual 
features. The chosen features were then used to develop an XGBoost model to predict the 
target variable. Since using LUR for feature selection imposes a linear relationship on the 
features and the target variable, while XGBoost can instead capture non-linear relationships 
in the data, this approach was not chosen for this study. Instead, features were selected using 
the protocol described in the Feature Selection section, and selected, scaled features were 
used to fit an XGBoost model. Gradient descent is used to minimize the loss function, in this 
case the mean squared error (MSE). 

 

Convolutional Neural Network (CNN) 

Finally, a one-dimensional convolutional neural network (1D CNN) was trained to predict CO2 

concentrations (Figure 1). The selected feature data was reshaped to explore the relationship 
between predictor variables. The model architecture includes two convolutional layers, the first 
applying 64 filters and the second applying 128 filters, each with a kernel size of 3 and ReLU 
activation function. The convolutional layers are each followed by a batch normalization layer 
to stabilize training, a max pooling layer with a pool size of 2 to reduce spatial dimensions, 
and a dropout layer with dropout rate of 20% to minimize overfitting. The output is then 
flattened and fed to a dense layer of 128 nodes activated using ReLU, followed by a batch 
normalization and a 20% dropout layer. The final output layer is a single node representing 
predicted CO2 concentrations. The CNN was compiled with the Adam optimizer, an initial 
learning rate of 0.001 and an MSE loss function. Early stopping, learning rate reduction on 
plateau, and model checkpointing based on validation loss were included as callbacks. The 
CNN was trained for up to 150 epochs with a batch size of 64 (Appendix E). Hyperparameters 
were tuned using a 3-fold cross-validated GridSearch.  

 

Model Validation and Testing 

Model performance was evaluated using the coefficient of determination (R2), the root mean 
squared error (RMSE), mean squared error (MSE) and the mean absolute error (MAE) (Figure 
1). After preprocessing the data by removing invalid observations and calculating daily 
averages for CO2 and meteorological features, the dataset was balanced to ensure a more 
consistent spatial and temporal coverage. Select nodes that were eliminated during the 
balancing process were used to evaluate model performance at unseen sensor locations. 
These test nodes were excluded from the training process and split into two groups: central 
test nodes (sensors that are surrounded by training nodes), and fringe test nodes (sensors 
that are geographically far removed or located near the fringes of the training network). 
Meanwhile, the data from balanced nodes was randomly split into training and test sets, where 
80% of the dataset was used for training and validation, while 20% of the data was reserved 
for testing. The traditional LUR and XGBoost models were scored using 10-fold cross-
validation, in addition to the reserved test set; given the complexity of the CNN and its training 
time, the CNN scores were not cross-validated. Model performance was evaluated and plotted 
for individual training and test nodes (see Results Explorer, Appendix A). 



 

Figure 1. The modelling workflow. Data collection (red), data processing by feature extraction and feature 
selection (orange), train-test split (blue), modelling using traditional LUR, XGBoost, and CNN (grey) and model 

evaluation (green). 

 

RESULTS 

 

BEACO2N Data Exploratory Data Analysis and Processing 

The number of reporting nodes was not consistent over the entire 12-year period. Nodes were 
installed and removed over time, with the total number of nodes growing from 12 in 2012 to a 
maximum of 54 in 2023. Individual nodes also experienced periods of defect or inactivity 
introducing additional temporal inconsistencies to the data. For example, all CO2 
measurements reported in 2012 were invalid (recorded as -999) and therefore eliminated. Six 
sensors reported only invalid data, while all nodes reported at least one invalid observation 
over the entire reporting period. Over 90% of days included in the reporting period had at least 
one invalid observation across the network. Invalid observations for CO2 and meteorological 
variables were dropped, as well as data from COVID-19 years 2020 and 2021. 

Calculating daily averages after filtering out invalid observations and daily averages with less 
than 18 hours’ worth of valid data produced 67,044 observations from a total of 65 nodes. This 
data was imbalanced, seeing as some nodes reported over 1,700 valid daily averages, while 



others reported less than ten; complete daily CO2 averages on some days were reported by 
only one node, while other daily averages were represented by over 40 nodes. In attempt to 
balance the daily average CO2 data, the dataset was filtered so that each day was represented 
by at least 27 nodes while every node reported at least 200 daily averages. The final dataset 
included 17,389 daily CO2 averages reported by 42 sensors. 11,128 observations were used 
for training, 2,783 for validation, and 3,478 observations were reserved for testing. Five of the 
sensors that were eliminated during the balancing procedure were used as central test nodes, 
while seven were used as fringe test nodes. 

 

 

Figure 2. BEACO2N sensor locations and groupings. 

 

Feature Selection 

After dropping 18 features with all zero data, 105 features entered the feature selection 
process. Applying the Spearman’s correlation coefficient condition selected 32 features, of 
which 11 passed the VIF condition. The eleven final features are: temperature, pressure, 
relative humidity, trees area (50m), total road length (1000m), total road length (200m), built 
area (2000m), total AADT (3000m), flooded vegetation area (1000m), industrial area (5000m), 
and average NDVI (50m). The feature selection scores presented in Table 3 highlight that the 
meteorological features and the trees feature had the strongest absolute relationships with 
CO2, followed approximately by population density, built area, NDVI, road length, and AADT. 
No features related to rangeland, water, bare ground, or crops were selected by either 
criterion. Overall, absolute Spearman’s correlation coefficients were relatively small, with the 
largest coefficients achieved by temperature and pressure, with coefficients of -0.51 and 0.40 
respectively. The reduction from 32 features to 11 by the VIF condition demonstrates that many 



features, especially features of the same category but of different buffer radii, were strongly 
intercorrelated. 

 

Table 3. Feature selection scores and outcomes. 32 features selected by Spearman's correlation coefficient, of 
which 11 were selected using VIF. The three meteorological features had the largest absolute Spearman’s 

coefficients. The sign of Spearman’s correlation coefficient indicates direction of effect on CO2 concentrations. 

Feature Spearman VIF 

temp -0.51 1.26 
pressure 0.40 2.47 

rh -0.11 1.20 
Trees_area_100m -0.09 - 
Trees_area_50m -0.08 2.14 
Trees_area_200m -0.06 - 
Trees_area_300m -0.06 - 
Trees_area_500m -0.05 - 

avg_pop_dens_2000m 0.05 - 
avg_ndvi_100m -0.05 - 

Built_Area_area_1000m 0.05 - 
avg_pop_dens_3000m 0.05 - 
avg_pop_dens_4000m 0.04 - 

Built_Area_area_3000m 0.04 - 
Built_Area_area_4000m 0.04 - 

avg_ndvi_200m -0.04 - 
avg_pop_dens_1000m 0.04 - 

total_road_length_1000m 0.04 1.65 
Trees_area_1000m -0.04 - 

avg_ndvi_300m -0.04 - 
total_road_length_200m 0.04 1.46 
Built_Area_area_2000m 0.04 1.93 

avg_ndvi_500m -0.04 - 
avg_pop_dens_5000m 0.04  

total_AADT_3000m 0.04 1.40 
Flooded_Vegetation_area_1000m -0.03 1.22 

Industrial_area_5000m 0.03 1.53 
Built_Area_area_500m 0.03 - 

total_AADT_1000m 0.03 - 
avg_pop_dens_500m 0.03 - 

avg_ndvi_50m -0.03 1.37 
avg_ndvi_1000m -0.03 - 

 

Training Node Model Performance 

Table 4 summarizes the model validation and testing scores. When the models were scored 
using the reserved test set representing 20% of the data from the training nodes, the traditional 
LUR model explained 34% of the variability in the observed CO2 data, while XGBoost and 
CNN both accounted for 58%. For the traditional LUR model, the RMSE, MSE, and MAE 
values achieved on the test data were 15.81, 250.02 and 12.04; XGBoost achieved RMSE, 
MSE and MAE values of 12.56, 157.66 and 9.14, respectively; and CNN achieved RMSE, 
MSE and MAE values of 12.63, 159.45, and 9.08, respectively. During model validation, 
XGBoost achieved the best scores across all metrics, whereas during model testing, XGBoost 
was closely rivaled by CNN. The 10-fold cross-validated scores for traditional LUR and 
XGBoost matched the validation and test set scores closely, indicating no overfitting within the 
training set. Geographically, R2 values were generally highest for training nodes around 
Richmond and Vallejo. Here, the network of sensors was especially dense and regularly 
spaced compared to areas in San Francisco, Berkeley and Oakland (see Results Explorer, 
Appendix A). 



 

Table 4. Model performance and comparison. XGBoost performed best on the validation and test sets. CNN 
performed marginally better for central and fringe test nodes. 

Evaluation Step Metric LUR XGBoost CNN 

Validation  
(20% of training set) 

R2 

RMSE 

MSE 

MAE 

0.35 

15.42 

237.78 

11.82 

0.60 

12.04 

145.02 

8.82 

0.57 

12.50 

156.15 

9.14 

Test Set 
(20% of full data) 

R2 

RMSE 

MSE 

MAE 

0.34 

15.81 

250.02 

12.04 

0.58 

12.56 

157.66 

9.14 

0.58 

12.63 

159.45 

9.08 

10-Fold CV 

R2 

RMSE 

MSE 

MAE 

0.34 

15.80 

249.57 

11.99 

0.58 

12.54 

157.26 

9.05 

- 

- 

- 

- 

Central Test Nodes 

R2 

RMSE 

MSE 

MAE 

0.31 

19.13 

366.05 

15.47 

0.42 

17.48 

305.67 

12.90 

0.42 

17.46 

304.71 

13.01 

Fringe Test Nodes 

R2 

RMSE 

MSE 

MAE 

-0.69 

20.21 

404.76 

17.24 

-0.88 

21.24 

451.14 

18.11 

-0.47 

18.77 

352.46 

16.10 

 

Testing Node Model Performance 

Model evaluation on unseen nodes demonstrates overall weaker performance than on test 
data reserved from training nodes. The models performed better for central test nodes, with 
XGBoost and CNN both accounting for 42% of the variability in the data. While traditional LUR 
only captured 31% of the variability for central test nodes, this score is very close to 
performance on training nodes, whereas XGBoost or CNN demonstrated a considerable drop 
in performance compared to training nodes (Table 4). All three models performed exceptionally 
poorly on the fringe test nodes, scoring negative R2 values. Overall, the CNN model achieved 
the best scores for unseen node locations.  

 

Feature Importances 

Beyond the Spearman’s correlation coefficient, feature importances for LUR and XGBoost 
were further analyzed. In the LUR model, the features with the highest partial R2 were 
temperature, pressure, and trees area (50m), with partial R2 values of 0.16, 0.14, and 0.05 
respectively (Appendix B). For XGBoost, feature importance measured through gain in 
accuracy highlighted pressure, temperature, trees area (50m), relative humidity, and total 
AADT (3000m) as the five most important features (Appendix C). Looking at SHAP (SHapley 
Additive exPlanations) values for XGBoost highlights pressure, temperature, relative humidity, 
built area (2000m), and industrial area (5000m) as the five most important features (Appendix 
D.) By SHAP value, trees area (50m) has the lowest relative importance. This indicates that 
nearby trees sometimes resulted in significant accuracy improvements, evidenced by a high 
gain, but its overall contribution to predicted concentration is less consistent across space. 



This is likely because many nodes were not located near significant tree areas. While relative 
humidity and total AADT (3000m) contribute moderately both in terms of improved accuracy 
and shaping predictions, likely due to their variability and abundance across space, built area 
(2000m) and industrial area (5000m) seem to play a significant role in shaping predictions 
given the effect of their presence or absence on ambient CO2. For both LUR and XGBoost, 
temperature and pressure are the two strongest predictor variables. 

 

 

Figure 1. Model CO2 predictions versus true concentrations for 20% reserved test data from training nodes. (A) 
Traditional LUR (OLS): R2=0.34, (B) XGBoost: R2=0.58, (C) CNN: R2=0.58. 

  

(B) 

 

(A) 

 

(C)  

 



DISCUSSION  

 

The results demonstrate that of the three models used to predict intraurban daily average CO2 
concentrations within the BEACO2N monitoring network, XGBoost achieved some of the 
highest scores on validation and test data reserved from training nodes. CNN achieved 
comparable performance to XGBoost for test data from training nodes but most notably 
demonstrated better performance on unseen node locations. Overall, XGBoost and CNN 
outperformed traditional LUR, indicating that non-linear relationships are more representative 
of the true relationship between the environmental predictor variables and CO2 concentrations 
(Figure 3). Like carbon monoxide models produced by Wong et al. (2021), this study 
evidences the ability of ML and DL algorithms to outperform traditional LUR, indicating that 
the non-linear trend is not specific to only CO2. This helps make the case that modelling of 
intraurban ambient gases like air pollutants or GHGs should move away from linear regression 
methods and instead focus on the potential of ML and DL algorithms to produce better 
predictions. 

Model performance at unseen node locations was lower than for training node locations. The 
models therefore have a low external validity, which echoes conclusions reached about the 
transferability and generalizability of traditional LUR models (Larkin et al., 2023; Li et al., 
2021). Comparing the performance between central and fringe test nodes indicates that 
predictive accuracy at unseen locations that are more centrally situated within the network of 
training nodes is higher than at node locations far removed from the main cluster of training 
nodes. Models to predict intraurban CO2 concentrations in a desired region should therefore 
be specific to that area and cover as much ground as possible at a fine spatial resolution. Poor 
performance at fringe test nodes is likely also the result of proximity to land use types that 
were underrepresented near training nodes, such as water bodies or forested areas. This 
resembles conclusions drawn by Ryan and LeMasters (2007) about the importance of the 
variability of land use characteristics captured by the network in determining model 
performance. Nodes with unusual distributions of observed CO2 were also more difficult to 
predict (Figure 4). Any network of nodes used to train prediction models for intraurban CO2 
concentrations should capture as much variability in predictor and target variables as possible. 

The analysis of feature importances highlights the significant contribution of meteorological 
features, especially temperature and pressure, in predicting ambient CO2 concentrations. The 
importance of these features is likely linked to their granular temporal resolution consistent 
with the target variable. Compared to land use features, which were individually not present 
throughout the entire study area and remained constant for all observations from a given node 
and buffer radius, meteorological features demonstrated an inherently higher degree of 
variability across observations. While at least one feature was selected from both the road 
length and AADT categories, their relative feature importance was lower than expected 
considering results from previous LUR studies (Larkin et al., 2023; Li et al., 2021; Ryan and 
LeMasters, 2007; Wong et al., 2021). The tree feature was shown to improve accuracy for 
both LUR and XGBoost, although the feature was not abundant across the entire study area 
and therefore did not shape most predicted values as evidenced by its low SHAP score. 
Instead, built area as the most abundant land use type and industrial activities in the greater 
vicinity were shown to shape predicted CO2 concentrations more consistently across the 
space. Overall, feature importances were more closely linked to spatiotemporal variability and 
abundance of a given feature near the network of training sensors than to their absolute 
contribution to true ambient levels of CO2.  



 

Figure 4. Comparing XGBoost model performance for (A) node 16 and (B) node 27. Node 16 has better R2 than 
node 27 despite similar locations. Trend consistent across all models. Notable differences are the number of 
observations (n) and (C) distributions of CO2 observations.  

 

The quality and availability of data for intraurban CO2 and predictor variables was a major 
limitation for this study. While the BEACO2N network has an impressive spatiotemporal 
resolution compared to other intraurban CO2 monitoring networks, the inconsistent validity of 
observations across nodes created a strong spatiotemporal imbalance in the dataset that had 
to be overcome. Furthermore, the generalizability of the network was compromised, especially 
in areas with greater proportions of land use types that were underrepresented near the 
network of training sensors. Irregularity and coarse spatial resolution in the distribution of 
sensors also seemed to contribute to poor performance in certain areas, compared to 
Richmond and Vallejo, where the network was denser and more regular. The constant 
temporal resolution of environmental features, especially traffic data, was another notable 
limitation. Ideally, data for predictor variables should be collected with the same spatial and 
temporal resolution as for CO2. The novelty of this study lies in modelling intraurban CO2 using 
LUR and ML algorithms. Future directions include modelling intraurban CO2 using different 
models, predictor variables, feature selection methodologies or CO2 monitoring networks. 

 

(B) 

 

(A) 

 

(C)  

 



CONCLUSION 

 

This study was the first of its kind to evaluate the viability of using LUR to predict intraurban 
ambient CO2 concentrations. The study has demonstrated that ML and DL algorithms can 
outperform traditional LUR in terms of predictive accuracy, illustrating that the relationship 
between environmental features and CO2 should not be presumed to be linear. This conclusion 
corroborates the findings of a previous study, underscoring the potential and value of 
expanding upon traditional LUR using novel modelling approaches. Evaluating models using 
data from unseen node locations further illustrated the models’ limitations in terms of 
generalizability and transferability. The availability and spatiotemporal variability of data from 
intraurban CO2 monitoring networks is scarce and remains a major limitation for research in 
this field. In light of rising urbanization and the increasingly drastic effects of climate change, 
efforts to establish intraurban CO2 monitoring networks with high spatiotemporal resolution 
should be expanded. More research into the modelling of ambient intraurban CO2 is necessary 
to better understand and predict the effects of anthropogenic urban activities and land use 
change on climate change. This research is vital to inform decision-makers on sustainable 
development and urban decarbonization in the 21st century.  
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APPENDIX 

 

Appendix A. GitHub repository 

All modelling was done in Python 3.11.9 on a computer with an Apple M2 Max chip and 32 GB 
of RAM. The code for the project can be found in the GitHub repository irp-acs223, 
containing the bayareaco2 Python module and as well as Jupyter notebooks that 
demonstrate model development and implementation. Instructions for installation and links to 
download data can be found in the README.md file. The explore folder hosts a GitHub Page, 
which allow the user to engage more interactively with the data and models used in the 
bayareaco2 module. The Feature Explorer demonstrates spatial feature variable data 
and node locations, while the Results Explorer showcases model performance for 
individual nodes. 

 

Appendix B. Traditional LUR model feature statistics to help demonstrate feature importances. 

Feature Coefficient Standard Error p-value VIF Partial R2 

temp -7.72 0.15 <0.005 1.25 0.16 

pressure 10.00 0.21 <0.005 2.52 0.14 

rh -2.98 0.15 <0.005 1.20 0.03 

Trees_area_50m 5.46 0.20 <0.005 2.17 0.05 

total_road_length_1000m -0.78 0.17 <0.005 1.66 <0.005 

total_road_length_200m 0.34 0.16 0.04 1.47 <0.005 

Built_Area_area_2000m 1.87 0.19 <0.005 1.93 0.01 

total_AADT_3000m 0.34 0.16 0.03 1.40 <0.005 

Flooded_Vegetation_area_1000m -0.62 0.15 <0.005 1.22 <0.005 

Industrial_area_5000m -1.91 0.17 <0.005 1.54 0.01 

avg_ndvi_50m 0.31 0.16 0.05 1.39 <0.005 

 

 

Appendix C. XGBoost Gain Feature Importance. The gain statistic describes the improvement in accuracy 
achieved by adding a given feature to the model. 

 

https://github.com/ese-msc-2023/irp-acs223.git
https://ese-msc-2023.github.io/irp-acs223/feature_explorer.html
https://ese-msc-2023.github.io/irp-acs223/results_explorer.html


 

 

Appendix D. XGBoost SHAP Feature Importance. The SHAP values describe the contribution of each feature to 
shaping the model's predictions. 

 

 

 

Appendix E. CNN training learning rate and loss curves. Observed learning rate reduction on plateau during 
training. Training and validation loss stable and decreasing consistently, no indication of overfitting. 
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