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Abstract

Accurately identifying individual leopards across multiple camera trap images is critical
for population monitoring and ecological studies. This paper introduces a novel Deep
Learning framework using Triplet Networks to distinguish between individual leopards
based on their unique spot patterns. The objective is to evaluate whether this framework
can effectively handle the complexity of animal pattern recognition. Unlike conventional
methods that primarily rely on explicit feature extraction methods, this approach uses
a Triplet Convolutional Neural Network architecture to implicitly learn discriminative
features from leopard coat patterns. This approach has seen extensive success in facial
recognition, demonstrating its potential for other open-set learning examples.

This research not only contributes to the Computer Vision field but also offers a powerful
tool for biologists aiming to study and protect leopard populations more effectively. It
serves as a stepping stone for applying the power of deep learning in Capture-Recapture
studies for other patterned species.

1 Introduction

Possibly the most critical task in conservation consists of being able to identify individual
animals over time. Through Capture-Recapture techniques, we can evaluate their fitness and
track their demographics (Wearn et al., 2017). For example, in the case of leopards, monitoring
their populations in an ever-growing urban landscape in India is the focus of intensive research
(Gubbi et al., 2020), (Gubbi et al., 2021). Traditionally, this process has been carried out
using invasive, telemetry-based methods; however, these techniques raise survival and stress
concerns (McMahon et al., 2005), which pose significant issues when studying endangered
species. With the advent of automatic camera traps, Photographic-Capture-Recapture (PCR)
has gained popularity among researchers. This method relies on clear, distinct markings
on the animals to facilitate individual identification. In earlier applications, the pattern
matching was done visually by researchers (Karanth et al., 1998). This approach becomes
extremely cumbersome for large datasets with thousands of images due to the need to attempt
to match every pattern with every identified individual in the dataset. Moreover, it can lead
to identification errors, notably the duplication of individuals, as it was seen in Verschueren et
al., 2022 that humans identified up to 22% more cheetah individuals than the actual population.

Given these limitations, it immediately became obvious that there was a need for semi-
automatic pattern matching through Computer Vision (CV) algorithms. Today, we have
numerous such programs. The state-of-the-art programs include Hotspotter (Crall et al.,
2013) and Wild-ID (Bolger et al., 2012). These algorithms are based on Scale Invariant
Feature Transform (SIFT) (Lowe, 2004) for explicit pattern extraction, and then use various
distance-based or Machine Learning pattern matching algorithms. These algorithms offer
varying results according to the species. We have found no studies on our target species,
although, in a species with similar rosettes, the Jaguar, the accuracy reported is over 70%
(Nipko et al., 2020). In other patterned species, accuracy reported ranges from 36% (Morrison
et al., 2016) to close to 100% (Burgstaller et al., 2021). Additionally, these systems require
manual intervention to extract a Region of Interest (ROI) where the animal is located. This
manual ROI extraction is not only time-consuming for large datasets but also introduces a
layer of subjectivity and potential inconsistency.

Despite the efficiency of these algorithms, they were developed before recent advances in Deep
Learning and may not harness the full potential of current technological capabilities. These
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methods can potentially achieve higher accuracy in individual animal identification due to
their ability to learn complex patterns and features from large datasets implicitly. There have
been some recent attempts to apply Deep Learning to this problem, notably to elephants
(Körschens et al., 2018), Giant Pandas (Hou et al., 2020), and even our own target species,
leopards (Pucci et al., 2020). While they report high accuracies in re-identification, they have
all built a traditional closed-set classifier, which means that their applicability outside of the
training population is very limited. For example, Hou et al., 2020 report that their accuracy
on a different population to the training descend from 95% to 21%.

This paper thus attempts to build an end-to-end Deep Learning solution to the PCR problem
on an open set, with a focus on leopards. We will evaluate whether Deep Learning for
implicit pattern extraction of leopard rosettes is a valid method, and compare to existing SIFT
implementations in terms of accuracy, efficiency, and scalability.

2 Methodology

2.1 Data Collection

Good and diverse data is paramount to building a good model. There has been extensive
research showing that Neural Networks need a large dataset to learn features robustly (Gütter
et al., 2022). In our case, this becomes even more crucial, as fixed camera trap images of
leopards are extremely variable in pose, lighting, etc.

To train the model, the Nature Conservation Foundation have provided us with 8900 tagged
images of 600+ individual leopards. While the majority of images are of high quality, all
the images were inspected manually, of which 612 were removed given the impossibility of
identifying an individual:

(a) Optimal image (b) Unusable image

Figure 1: Comparison of optimal and unusable images

The remaining images have a skewed distribution in the number of images per leopard flank,
with a mean of just 6.4 images per flank:
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Figure 2: Histogram of the number of images per flank.

2.2 Preprocessing

Differing from Hotspotter and Wild-ID, in which the user has to manually identify the ROI,
we’ll attempt to use current advances in CV for automatic detection extraction of bounding
boxes, using a pre-trained YOLO network for this (Redmon et al., 2015).

Furthermore, as seen in de Lorm et al., 2023, filtering out the background results in a perfor-
mance increase in previous re-identification algorithms. We will thus use further existing CV
algorithms for this, such as ”rembg” (Gatis, 2020).

Edge-detection techniques as a preprocessing step have been associated with a performance
increase for other classifiers (Chengeta et al., 2019). Hence, we can use Edge-detection to
homogenize lighting condition variations across images and isolate the patterns that we want
the model to focus on.

Figure 3: Canny-Edge-Detection applied to a YOLO bounding box around a Leopard. Back-
ground not removed
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2.3 Triplet Convolutional Neural Network

With sufficiently preprocessed training data, we can feed it into our network. Open-set identi-
fication tasks, in which the ”classes” seen in the test and application phases are not the same
as those seen in training pose significant issues. Training traditional classifiers for this task
is unsuitable, as the model learns to discriminate solely between classes seen in training and
cannot extrapolate to new individuals (Hou et al., 2020).

Given this, we can take inspiration from the parallels of this task with facial recognition
models, and design a Triplet Network (Schroff et al., 2015, Sankaranarayanan et al., 2016). In
such an architecture, instead of outputting a class label, the network learns a feature space
where embeddings of images are directly compared. The network is designed to process three
images at a time: an anchor image, a positive image (i.e., another image of the same leopard),
and a negative image (i.e., an image of a different leopard).

The Triplet CNN consists of three identical sub-networks sharing the same weights. Each
sub-network outputs an embedding vector for its input image, and the similarity between
these vectors is measured using a distance function.

The training objective is to minimize the distance between the anchor and the positive while
maximizing the distance between the anchor and the negative through the triplet loss (Schroff
et al., 2015):

L = max(d(a, p)− d(a, n) + α, 0)

where d(x, y) is the distance between the embeddings of images x and y, a, p, and n represent
the anchor, positive, and negative images, respectively, and α is a hyperparameter that defines
how much the negative example should be farther away from the anchor compared to the
positive. Other relevant losses that have succeeded in facial recognition will also be examined
(Khan et al., 2024).

By not only learning to minimize the distance of intra-class instances but also maximizing
the distance of inter-class instances, this architecture is particularly suited for open-set dis-
criminative learning of similar classes. Other recent architectures such as CLIP are gaining
traction in open-set learning, but it seems that Triplet Networks are uncontested winners in
discriminating between similar classes (Radford et al., 2021, Bhat et al., 2023).

Considering our limited dataset size, we intend to implement transfer learning using pre-trained
networks designed for facial recognition, known for their robust discriminative capabilities of
highly similar classes (Liu et al., 2017). These networks, primarily optimized for human facial
features, may encounter generalization challenges when adapted to the completely differing
leopard rosettes. Thus, a detailed empirical evaluation will have to be carried out to find the
best architecture.

2.4 Evaluation and Application

2.4.1 Validation set loss

To evaluate the model, we apply the loss to the validation set of unseen leopards, differing from
previous attempts at classifying individual animals (Hou et al., 2020, Körschens et al., 2018).
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With this, we can ensure that the network is learning to discriminate between individuals in
general, and not just learning the representations of the leopard coats seen in training.

2.4.2 Application to new leopards

Firstly, during the application phase, each image is processed through one branch of the Triplet
Network to generate the rich embeddings.

Given the open-set nature of the problem, whenever we apply the model to new data, we
will have to have a decision-making algorithm that, given the patterns extracted through the
network, matches the most similar ones together. Given that the one-vs-many approach will
be inefficient for large datasets, using nearest-neighbours algorithms will be used here. At this
point, we will use common metrics in the field such as top-rank accuracy (Nipko et al., 2020,
Grabham et al., 2024) to compare our implementation with that of Hotspotter.
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3 Expected Deliverable

The expected deliverable will be an end-to-end Deep Learning model able to classify any given
dataset of leopard images into individuals. It will overcome current limitations of Hotspotter
and Wild-ID, such as their manual ROI selection. However, the main objective of the project
is to explore whether Deep Learning can be used as an effective solution to leopard individual
identification, comparing the attained accuracy against SIFT-based Hotspotter.

In facial recognition implementations, CNN’s are seen to struggle with pose variations (Singh
et al., 2018). We postulate that this will be the major challenge to overcome for our model, as
fixed camera traps result in completely varying leopard poses:

Figure 4: Comparison of 4 images of the same leopard among widely different poses, distances
from the camera, and lighting conditions

4 Future Plan

The Gantt chart below outlines the plan for the whole project. One will notice that the work
currently done is extensive, yet intangible.
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Figure 5: Gantt Chart of work to be done
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